

Autonomous College Permanently Affiliated to VTU, Approved by AICTE & UGC Accredited by NAAC with 'A' Grade, Accredited by NBA

The Trust is a Recipient of Prestigious Rajyotsava State Award 2012 Conferred by the Government of Karnataka

Awarded Outstanding Technical Education Institute in Karnataka

Ring Road. Bellandur Post, Near Marathalli, Bangalore -560 103, INDIA

First and Second Semesters
Bachelor of Engineering (BE)
(Common to all Branches)
Scheme and Syllabus

CONTENTS

1	First Semester - Credit Scheme for Chemistry and Physics Cycles	2
2	Second Semester - Credit Scheme for Chemistry and Physics Cycles	3
	CHEMISTRY CYCLE SYLLABUS	
3	Applied Mathematics-I(Common to both Cycles in I semester)	5
4	Engineering Chemistry	8
5	Introduction to Programming With 'C'	12
6	Computer Aided Engineering Drawing	15
7	Basic Electronics	18
8	Engineering Chemistry Lab	21
9	Programming with C Lab	23
10.	Essential English(Common to both Cycles in I Semester)	26
11.	Constitution of India and Professional Ethics	28
	PHYSICS CYCLE SYLLABUS	
1	2. Applied Mathematics-II (Common to both Cycles in II Semester)	32
1	3. Engineering Physics	34
1	4. Elements of Mechanical Engineering	37
1	5. Elements of Civil Engineering	41
1	6. Basic Electrical Engineering	44
1	7. Engineering Physics Lab	46
1	8. Basic Electrical Engineering Lab	48
1	9. Professional Communication (Common to both Cycles in II Semester)	50

CREDIT SCHEME FOR I SEMESTER B.E

		FIRST SEM	MESTEI	R- CHE	MIST	RY CYC	LE				
Sl.	Course Code		BoS Distribution (Overall Contact		Marks				
No		Course		L	T	P	Credits	Hours	CIE	SEE	Total
1	19MAT11	Applied Mathematics-I	BS	2	1	0	3	4	50	50	100
2	19CHE12	Engineering Chemistry	BS	3	0	0	3	3	50	50	100
3	1 19CSE13	Introduction to Programming with C	CSE	3	0	0	3	3	50	50	100
4	1 19MFF14	Computer Aided Engineering Drawing	ME	1	0	2	3	5	50	50	100
5	19ECE15	Basic Electronics	ECE	3	0	0	3	3	50	50	100
6	19CHL17	Engineering Chemistry Lab	BS	0	0	2	2	4	25	25	50
7	19CSL18	Programming with C Lab	CSE	0	0	2	2	4	25	25	50
8	19HSS171	Essential English	HSS Mandatory Course 0 2 2		25	25	50				
9	1 19455177	Constitution of India and Professional Ethics	HSS Mandatory Course 0 2 25 25			50					
	Total 19 30 350 350 700										

		FIRST SEM	IESTER-	PHYS	ICS CYO	CLE					
				Credit							
Sl.	Course	Course	BoS	Di	stributi	on	Overall	Contact		Marks	5
No	Code	Course	Б03	L	T	P	Credits	Hours	SEE	CIE	Total
1	19MAT11	Applied Mathematics -I	BS	2	1	0	3	4	50	50	100
2	19PHY12	Engineering Physics	BS	3	0	0	3	3	50	50	100
3	19MEE13	Elements of Mechanical Engineering	ME	3	0	0	3	3	50	50	100
4	19CIV14	Elements of Civil Engineering	CV	3	0	0	3	3	50	50	100
5	19EEE15	Basic Electrical Engineering	EE	3	0	0	3	3	50	50	100
6	19PHL16	Engineering Physics Lab	BS	0	0	2	2	4	25	25	50
7	19EEL17	Basic Electrical Engineering Lab	EE	0	0	2	2	4	25	25	50
8	19HSS171	Essential English	HSS	M	landato Cours	,	0	2	25	25	50
	Total 19 26 325 325 650									325	650

CREDIT SCHEME FOR II SEMESTER BE

		SECOND SEME	STER-	CHEM	IISTRY	CYCLI	E				
			Credit								
Sl.	Course		BoS	Di	istributi	on	Overall	Contact		Marks	3
No	Code	Course		L	T	P	Credits	Hours	CIE	SEE	Total
1	19MAT21	Applied Mathematics-II	BS	2	1	0	3	4	50	50	100
2	19CHE22	Engineering Chemistry	BS	3	0	0	3	3	50	50	100
3	19CSE23	Introduction to Programming with C	CSE	3	0	0	3	3	50	50	100
4	19MEE24	Computer Aided Engineering Drawing	ME	1	0	2	3	5	50	50	100
5	19ECE25	Basic Electronics	ECE	3	0	0	3	3	50	50	100
6	19CHL27	Engineering Chemistry Lab	BS	0	0	2	2	4	25	25	50
7	19CSL28	Programming with C Lab	CSE	0	0	2	2	4	25	25	50
8	19HSS271	Communication	HSS	HSS 2 0 0		2	2	25	25	50	
9	9 19HSS272 Constitution of India and Professional Ethics HSS Mandatory Course			0	2	25	25	50			
	Total 21 30 350 350 700										

		SECOND	SEMES	TER-	PHYS	ICS CY	CLE				
Sl.	Course Code	Course	BoS	Credit Distribution			Overall Credits	Contact Hours		Marks	5
NO	Code		БОЗ	L	Т	P	Credits	nours	SEE	CIE	Total
1	19MAT21	Applied Mathematics -II	BS	2	1	0	3	4	50	50	100
2	19PHY22	Engineering Physics	BS	3	0	0	3	3	50	50	100
3	19MEE23	Elements of Mechanical Engineering	ME	3	0	0	3	3	50	50	100
4	19CIV24	Elements of Civil Engineering	CV	3	0	0	3	3	50	50	100
5	19EEE25	Basic Electrical Engineering	EE	3	0	0	3	3	50	50	100
6	19PHL26	Engineering Physics Lab	BS	0	0	2	2	4	25	25	50
7	19EEL27	Basic Electrical Engineering Lab	EE	0	0	2	2	4	25	25	50
8	19HSS271	Professional Communication	HSS	2	0	0	2	2	25	25	50
	Total							26	325	325	650

I YEAR BE SYLLABUS- CHEMISTRY CYCLE

APPLIED MATHEMATICS-I

(Common to Chemistry Cycle and Physics Cycle in I Semester)

 Course Code : 19MAT11
 Credits 3

 L: T: P : 2:1:0
 CIE Marks : 50

 Exam Hours : 03
 SEE Marks : 50

Course Outcomes: On completion of the course, student would be able to:

CO1	Understand the principles of engineering mathematics through calculus						
CO2	Calculate the extreme values of a function of two variables						
CO3	Apply the concepts of integration of functions of two/three variables over a region						
1	Develop the ability to construct mathematical models involving differential equations and interpret their solutions physically						
CO5	Apply ideas from linear algebra in solving systems of linear equations						
CO6	Reduce square matrices to diagonal forms.						

	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO1	3	3	3	-	-	-	-	-	-	3	-	3
CO2	3	3	3	3	-	-	-	-	-	3	-	3
CO3	3	3	3	3	-	-	-	-	2	3	-	3
CO4	3	3	3	3	-	-	-	-	2	3	-	3
CO5	3	3	3	-	-	-	-	-	-	3	-	3
CO6	3	3	3	-	-	-	-	-	-	3	-	3

	COURSE SYLLABUS						
Module No.	CONTENTS OF THE MODULE	Hours	COs				
1.	Differential Calculus: Polar Curves: Angle between the radius vector and tangent (Derivation and Problems), angle between two curves (Problems), Pedal equation for polar curves (Problems). Curvature and radius of curvature: Cartesian and polar forms (without proof). Centre and Circle of curvature (formulae only)	9L	CO1				
	Applications: Curvature to evolutes and involutes.						

2.	Partial derivatives: Introduction to partial differentiation, Euler's theorem(Derivation and Problems), Total derivatives, Partial differentiation of composite functions, Jacobian-definition and Problems. Applications: Maxima and Minima of functions of two variables-Problems.	9L	CO2
3.	Integral Calculus: Problems on Double and triple integrals, evaluation of double integrals by changing the order of integration and changing into polar coordinates. Definitions of Beta and Gamma functions, Relation between beta and gamma functions and simple problems. Applications: Applications of double and triple integrals to find area enclosed by plane curves and volume of sphere and tetrahedron.	9L	соз
4.	Ordinary Differential Equations of first order: Solution of first order and first degreedifferential equations: Problems on Exact, Linear and Bernoulli's differential equations. Applications: Orthogonal Trajectories, Newton's law of cooling, laws of decay and growth-Problems.	9L	CO4
5.	Linear Algebra: Problems on rank of a matrix by elementary transformations, Solution of system of homogeneous and non-homogeneous linear equations, Gauss-Jordon method, Linear transformation, Eigen values and Eigen vectors of a square matrix, Diagonalisation of a square matrix-Problems.	9L	CO5 CO6

Textbooks:

- $1.\ Erwin\,Kreyszig, Advanced\,Engineering\,Mathematics, Wiley-India\,Publishers, 10^{th}\,Edition, 2014, ISBN:\,978-81-265-5423-2.$
- $2.\ B.S. Grewal, Higher Engineering \, Mathematics, Khanna \, Publishers, 43^{rd} \, Edition, 2014, \\ ISBN: \, 978-81-7409-195-5.$

Reference Books:

- 1. Glyn James, Modern Engineering Mathematics, Prentice Hall, $4^{\rm th}$ Edition, 2015, ISBN: 978-0-273-73409-3
- $2.\ B.\ V.\ Ramana, Higher Engineering\ Mathematics, McGraw\ Hill\ Education\ (India)\ Private\ Limited,\\ 4^{th}\ Edition,\ 2016,\ ISBN:\ 978-0-07-063419-0.$
- $3.\,H.\,K.\,Dass, Advanced\,Engineering\,Mathematics, S.\,Chand\,\&\,Company\,Ltd.,\,28^{th}\,Edition,\,2012,\\ ISBN:\,81-219-0345-9.$
- $4.\ N.P. Bali\ and\ Manish\ Goyal, A\ Text\ Book\ of\ Engineering\ Mathematics, Laxmi\ Publications\ (P)\ Ltd.,$ $9^{th}\ Edition,\ 2014,\ ISBN:\ 978-81-318-0832-0.$

Assessment Pattern:

1. CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests (25 Marks)	Assignment1 (7.5Marks)	Assignment2 (7.5Marks)	Quiz1 (05Marks)	Quiz2 (05Marks)
Remember	5	2.5	2.5	-	-
Understand	5	2.5	2.5	-	-
Apply	10	2.5	2.5	05	05
Analyze	2.5	-	-	-	-
Evaluate	2.5	-	-	-	-
Create	-	-	-	-	-

2. SEE- Semester End Examination (50Marks)

Bloom's Category	SEE Marks
Remember	10
Understand	10
Apply	20
Analyze	5
Evaluate	5
Create	-

Engineering Chemistry

 Course Code
 : 19CHE12/22
 Credits
 3

 L: T: P
 : 3:0:0
 CIE Marks
 50

 Exam Hours
 : 3hours
 SEE Marks
 : 50

Course Outcomes: On completion of the course, student would be able to:

CO1	Explain the chemistry behind engineering materials in various devices which are in the service of mankind.
CO2	Analyse the existing problems and find the solutions with respect to engineering materials, energy production and other natural resources.
CO3	Evaluate the various parameters that decide the performance and usage of materials and devices.
CO4	Acquire technical competence in industries with respect to engineering materials.
CO5	Implement the alternative technologies and methods to exploit resources in an efficient way.
CO6	Use advanced engineering materials in emerging trends.

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	3	2	-	-	-	-	2	-	-	-	-	2
CO2	3	2	-	-	-	-	2	-	-	-	-	2
СО3	3	2	-	-	-	-	-	-	-	-	-	2
CO4	3	2	-	-	-	-	-	-	-	-	-	2
CO5	3	2	-	-	-	-	2	-	-	-	-	2
CO6	3	2	-	-	-	-	-	-	-	-	-	2

	COURSE SYLLABUS		
Module	CONTENTS OF THE MODULE	Hours	COs
No			
1	Electrochemical Energy Systems: Principles of electrochemistry: Gibb's free energy, EMF, Equilibrium constant ,cell notations, Galvanic cell. Single electrode –Introduction, origin of single electrode potential ,Nernst equation for single electrode potential-Derivation, problems on single electrode		
	potential and cell potential. Types of electrodes, reference electrodes- construction and working of calomel electrode. Ion selective electrodes-construction of glass electrode, derivation of Nernst equation for glass electrode potential(E _G).Determination of pH of a solution using glass electrode Concentration cells-construction and working, Nernst equation for cell potential, problems on cell potential Batteries: Principal components of a battery, battery characteristics-voltage, capacity, cycle life, shelf life, classification of battery-primary, secondary, reserve batteries. Construction, working and applications of alkaline battery, secondary Lithium ion battery(LiCoO ₂), recent advances in battery technology (2hrs) Fuel cell-Definition, classification, construction, workingand applicationof solid oxide fuel cell(SOFC), recent advances in fuel cell technology Super capacitors-Definition, classification, construction, working and application of EDLCs (Electrical double layer super capacitors), advances in super capacitors		CO1, CO2, CO3, CO4, CO5, CO6
2	Corrosion Science and Metal Finishing; Introduction, Electrochemical theory of corrosion. Typesofcorrosion – differentialmetal, differential aeration corrosion (pitting and waterline) and stress corrosion. Corrosion control techniques: – protective coatings – metal coatings (Anodic and Cathodic metal coatings taking Galvanization and Tinning as example). Inorganic coatings - Anodizing of aluminum. Cathodic protection by sacrificial anodic method and Impressed voltagemethod. Metal Finishing -Introduction and technological importance. Metal finishing techniques. Electro plating - Gold plating by Alkaline cyanide bath Electroless plating – Electroless plating of copper and its applications in making PCB, Chemical vapour deposition method Instrumental Methods of Chemical Analysis: Methods of chemical analysis - Qualitative and Quantitative, Advantages and disadvantages of instrumental methods over the classical methods. Principle, instrumentation and applications of UV- Visible spectrophotometry, conductometry and Flame photometry		CO1, CO2, CO3, CO4, CO5, CO6

3	Non-renewable and renewable energy Sources	9	
	Introduction to chemical fuels, classification. Properties of fuels: Calorific value (GCV and NCV), Density, viscosity, pour point, cloud point, flash point, octane and cetane numbers, Determination of calorific value of fuel using Bomb calorimeter-Numerical problems, Knocking in IC engine and its mechanism, Anti-knocking agents, unleaded petrol, Cracking (FCC) and reformation of petroleum fractions. Energy Crisis- Global scenario, need of renewable energy sources Biomass Energy- Introduction- Routes of biomass conversion to energy, Thermo-chemical Conversion: Pyrolysis - Bio-oil: Introduction, process and applications. Biochemical Conversion: Biomethanation -Biogas: Introduction, process and applications. Chemical Conversion: Transesterification - Biodiesel: Introduction, process and applications Solar Energy- Conversion of solar energy into electrical energy, Construction and working of silicon solar cell and Dye-sensitized solar cell, Advantages and disadvantages of PV cells		CO1, CO2, CO3, CO4, CO5, CO6
4	Environmental Chemistry	9	
	Chemical aspects of air pollution: Primary, Secondary, minor air pollutants, aerosols and particulate matter. Green house effect and global warming. Chemical capturing of carbon dioxide. Chemical aspects of soil pollution: Agro chemicals, waste dumps, mining operations. Control and remediation of soil pollution Chemical aspects of water pollution: Impurities in water, determination of chemical oxygen demand of waste water sample, problems on it. Softening of water by ion exchange method. Desalination of sea water by electro-dialysis. Sewage treatment – Physical and biological. Photo catalytic dye degradation in water by TiO2 nanoparticles. Removal of heavy metals from industrial waste water.		CO1, CO2, CO5, CO6
5	Introduction to polymers-Types of polymerization- addition and condensation polymerization. Glass transition temperature - Definition, Factors influencing Tg-Flexibility, intermolecular forces, molecular mass. Significance ofTg. Important commercial and engineering plastics: Synthesis, properties and applications of Poly propylene, Polytetrafluoroethylene (PTFE), Kevlar, Polyetheretherketone (PEEK). Advanced polymers: Properties and applications of shape memory polymers-polyurethane, biodegradable polymers - polylactic acid, conducting polymers - Polyacetylene, polymer composites. Nanomaterials: Introduction, Classification based on dimensions (0D, 1D, 2D and 3D), size dependent properties - Catalytic, Thermal and Optical. Bottom up and top down approach of nanomaterial synthesis, Synthesis and applications of copper oxide nanoparticles by co-precipitation method, zinc oxide nanoparticles by solution combustion method and carbon nanotubes (CNTs) by chemical vapor deposition.	9	CO1, CO2, CO3, CO4, CO5, CO6

Textbooks

- ChemistryforEngineeringStudents,B.S.Jaiprakash,R.Venugopal,Shivakumaraiahan d Pushpalyengar, Latest Edition, Subhash Publications, Bangalore
- 2. EngineeringChemistrybyVRKulkarniandK.RamakrishnaReddy,1stEdition,2016,NewA ge International Publishers.
- 3. ATextBookofEngineeringChemistry,JainandJain,16thrdEdition,Dhanpatrai **Publications**

Reference Books

- CorrosionEngineeringbyM.G.Fontana,TataMcGrawHillEducation Pvt.Ltd.NewDelhi.
 Engineering Chemistry, Wiley India second Edition2014.
 Nanochemistry A Chemical Approach to Nanomaterials by G. A. Ozin and A. C.Arsenault.
 Polymer Science by V.R. Gowariker, 2011 Edition

- 5. A textbook of Environmental Chemistry by V.Subramanian, 2017 edition.

Assessment Pattern

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests (25 Marks)	"	Assignment2 (7.5Marks)	Quiz1 (5Marks)	Quiz2 (5 Marks)
Remember	5			1	1
Understand	10			2	2
Apply	5	4	4	1	1
Analyze	5	3.5	3.5	1	1
Evaluate		-			
Create	-	-			

SEE- Semester End Examination (50 Marks)

Bloom's Category	SEE Marks (50)
Remember	10
Understand	20
Apply	10
Analyze	10

INTRODUCTION TO PROGRAMMING WITH 'C'

 Course Code
 : 19CSE13/23
 Credits
 3

 L: T: P
 : 3:0:0
 CIE Marks
 50

 Exam Hours
 : 03
 SEE Marks
 50

Course Outcomes: On completion of the course, student would be able to:

CO1	Apply the fundamentals of problem-solving skills to solve problems.
CO2	Apply the basic concepts of branching, looping statements of C Language in problem solving.
CO3	Design and evaluate C programs based on different data types, decision structures, loops, arrays, strings and functions.
CO4	Analyze the given application and choose appropriate structures, files, pointers.
CO5	Analyze the various searching and sorting algorithms.
CO6	Categorize various data structures and their applications.

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	3	-	-	-	-	-	-	-	-	1	-	1
CO2	3	-	-	-	3	-	-	-	3	-	-	-
CO3	3	3	3	-	3	-	-	-	3	-	-	-
CO4	3	3	3	-	3	-	-	-	3	-	-	-
CO5	3	3	3	1	3	-	-	-	3	1	-	-
CO6	3	3	-	-	-	-	-	-	-	1	-	1

	COURSE SYLLABUS		
Module No	CONTENTS OF MODULE	Hrs	COs
1	Introduction to C Language: Algorithm, Flowchart, Pseudo-code solution to problem, Basic concepts of a C program, Declaration, Assignment & Print statement, Types of operators and expressions, Programming examples and exercise.	6	CO1, CO2
2	Branching and Looping: Two-way selection (if, if- else, nested if- else, cascaded if-else), switch statement, ternary operator? Goto, Loops (For, do- while, while) in C, break and continue, programming examples and exercises.	8	CO2, CO3

	Functions : User defined functions- function definition, function declaration,		
	function call, Formal and actual parameters, Categories of functions, Passing		
	parameters to functions- Pass by value, Pass by reference, Recursion- types of		
	recursion, programming examples and exercises.		
	Arrays and Strings: Arrays: Classification of arrays, Storing value in arrays,		CO2,
3	Using arrays with Functions- passing individual elements of array, passing the	12	соз,
	whole array, Multidimensional arrays-addition and multiplication of matrices,		CO5
	Searching and Sorting-Linear search, Binary search, Bubble sort, String:		
	Declaring, Initializing, Printing and reading strings, String input and output		
	functions, String handling functions, Arrays of strings, programming examples		
	and Exercises.		
	Structures and File Management: Basics of structures- structure data types, type		
	definition, accessing structures, Structure operations, Complex structures-nested		
4	definition, accessing structures, Structure operations, Complex structures-nested structures, structures containing arrays, Array of structures, Structures and	8	соз,
4		8	CO3,
4	structures, structures containing arrays, Array of structures, Structures and	8	,
4	structures, structures containing arrays, Array of structures, Structures and Functions, File Management : Creating a file, Declaring file pointer variable, Modes	8	,
4	structures, structures containing arrays, Array of structures, Structures and Functions, File Management : Creating a file, Declaring file pointer variable, Modes of a file, Opening and closing the files, Input and output operations, Programming	8	,
4	structures, structures containing arrays, Array of structures, Structures and Functions, File Management : Creating a file, Declaring file pointer variable, Modes of a file, Opening and closing the files, Input and output operations, Programming examples and exercises.		CO4
4	structures, structures containing arrays, Array of structures, Structures and Functions, File Management : Creating a file, Declaring file pointer variable, Modes of a file, Opening and closing the files, Input and output operations, Programming examples and exercises. Pointers: Pointers concepts, Pointers and functions, Arrays and pointers,	10	CO4,
	structures, structures containing arrays, Array of structures, Structures and Functions, File Management : Creating a file, Declaring file pointer variable, Modes of a file, Opening and closing the files, Input and output operations, Programming examples and exercises. Pointers: Pointers concepts, Pointers and functions, Arrays and pointers, address arithmetic, Character pointer and functions, Pointer to pointer, Dynamic		CO4

Textbooks:

 $1.\ {\rm ``The\ C\ Programming Language'', Brian W.\ Kernighan\ and\ Dennis\ M.\ Ritchie,\ 2^{\rm nd}}$

2. "Problem Solving with C ", Jacqueline Jones & Keith Harrow, 1 st Edition, Pearson 2011.

Reference Books:

- 1. "Computer Concepts and C Programming", Vikas Gupta, Dreamtech Press 2013.
- 2. " Programming with C ", R. S. Bichkar, University Press, 2012.
- 3. "Computer Programming in C", V. Rajaraman, PHI, 2013.

Assessment Pattern:

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests	Assignment1	Assignment2	Quiz1	Quiz2
Marks (out of 50)	25	7.5	7.5	5	5
Remember	2.5	-	-	-	-
Understand	2.5	-	-	-	-
Apply	7.5	4	4	-	-
Analyze	2.5			2.5	2.5
Evaluate	2.5			2.5	2.5
Create	7.5	3.5	3.5	-	-

SEE - Semester End Examination (50 Marks)

Bloom's Category	SEE Marks
Remember	5
Understand	5
Apply	15
Analyze	5
Evaluate	5
Create	15

COMPUTER AIDED ENGINEERING DRAWING

 Course Code
 : 19MEE14/24
 Credits
 : 03

 L: T: P
 : 1:0:2
 CIE Marks
 : 50

 Exam hours
 : 03
 SEE Marks
 : 50

COURSE OUTCOMES: On completion of the course, student would be able to:

	Apply the knowledge of engineering fundamentals in order to understand about Dimensioning
CO1	conventions and standards related to working drawings and understand the theory of orthographic
	projections in order to communicate effectively with engineering community.

- Analyze the data in Organizing, demonstrating and arranging solids and planes in different positions using Modern tool usage with this contextual knowledge, complex problems can be solved.
- CO3 Improved visualization skills which can lead to the development of sketch into orthographic views further helps in modelling of complex engineering problems.
- CO4 By interpreting the given data, design or develop the 3D models in isometric view with the help of modern Engineering software tools.
- Engage in independent study as a member of a team and make an effective oral presentation or demonstration on topics related to the practical application and complex engineering problems using advanced mechanical systems or software..
- CO6 Understanding physical dimensions or specifications prior to executing complex engineering problems.

Mapping of CO v/s PO:

Cos	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	2	-	-	-	-	-	-	-	-	2	-	-
CO2	2	-	2	-	1	-	-	-	-	-	-	-
CO3	-	-	-	-	1	-	-	-	-	-	-	-
CO4	-	-	-	2	1	-	-	-	-	-	-	-
CO5	-	-	-	2	-	-	-	-	-	-	-	2
CO6	-	-	2	-	1	-	-	-	1	-	-	-

	COURSE SYLLABUS					
Module No	CONTENTS OF MODULE	Hrs	COs			
1	INTRODUCTION: Introduction to Computer Aided Sketching: Introduction, Drawing instruments and their uses, BIS Conventions, Lettering, dimensioning, geometrical constructions and freehand practicing. Introduction to software, commands used for engineering drawing PROJECTIONS OF POINTS: Introduction, Definitions - Planes of projection, reference line and conventions employed, Projections of points in all the four quadrants.	06	CO1			
2	PROJECTIONS OF STRAIGHT LINES Projections of straight lines (located in First quadrant/first angle only) True and apparent lengths, True and apparent inclinations to reference planes (No application problems)	06	CO2			
3	PROJECTIONS OF PLANE SURFACES Introduction, Definitions-projections of plane surfaces- triangle, square, rectangle, rhombus, pentagon, hexagon and circle, planes in different positions by change of position method only (No problems on punched plates and composite plates)	08	соз			
4	PROJECTIONS OF SOLIDS Introduction, Definitions – Projections of right regular tetrahedron, hexahedron (cube), prisms, pyramids, cylinders and cones in different positions (No problems on octahedrons and combination solid).	14	CO4			
5	ISOMETRIC PROJECTIONS (USING ISOMETRIC SCALE ONLY) Introduction, Isometric scale, Isometric projection of simple plane figures, Isometric projection of tetrahedron, hexahedron(cube), right regular prisms, pyramids, cylinders, cones, spheres, cut spheres and combination of solids (Maximum of three solids). DEVELOPMENT OF LATERAL SURFACES of right regular prisms, pyramids, cylinders and cones, their frustums and truncations. (No problems on lateral surfaces of trays, tetrahedrons, sphere and transition pieces)	10	CO5&CO6			

TEXT BOOKS:

- 1. Engineering Drawing N.D. Bhatt & V.M. Panchal, 48th edition, 2005-Charotar Publishing House, Gujarat, ISBN-13: 978-9380358178
- Computer Aided Engineering Drawing K. R. Gopalakrishna, Subash Publishers, Bangalore, 2015, ISBN-13: 9789383224204

REFERENCE BOOKS:

- 1. A Primer on Com puter aided Engineering drawing 2006, published by VTU, Belgaum.
- Fundamentals of Engineering drawing with an Introduction to Interactive Computer Graphics for Design and Production' – Luzadder Warren J., Duff John M., Eastern Economy Edition, 2005 – Prentice-Hall of India Pvt. Ltd., New Delhi.

CIE- Continuous Internal Evaluation for theory (50 Marks)

Bloom's Category	Tests	Assignment1	Assignment2	Surprise Test
Marks (out of 50)	25	10	10	5
Remember	2	1	1	0
Understand	6	2	2	1
Apply	6	2	2	1
Analyze	6	2	2	1
Evaluate	2	1	1	1
Create	3	2	2	1

SEE - Semester End Examination (50 Marks)

Bloom's Category	SEE Marks
Remember	4
Understand	10
Apply	11
Analyze	11
Evaluate	4
Create	10

ASSESSMENT METHOD:

CIE:

- 1. Three internals tests (each 25 marks) are conducted, average of all the three tests marks will be considered.
- 2. Submission of drawing sheets/printouts as assignment will carry 20 marks.
- 3. One written surprise test conducted and evaluated for 5 marks.

SEE:

- 1. One Question for 10 Marks from Module 1- Only Sketching
- 2. One Question for 10 Marks from Module 2 Only Sketching
- 3. One Question for 20 Marks from Module 3 Only Sketching
- Two Questions for 40 Marks from Module 4 Only software drafting (With Choice)
- 5. One Question for 20 Marks from Module 5 Only software drafting (With Choice)

BASIC ELECTRONICS

 Course Code
 : 19ECE15/25
 Credits
 03

 L: T: P
 : 3:0:0
 CIE Marks
 50

 Exam Hours
 : 03
 SEE Marks
 50

Course Outcomes: On completion of the course, student would be able to:

CO1	Identify semiconductor diodes and their applications.
CO2	Analyze the basic characteristics of active devices (BJT and MOSFET)
CO3	Illustrate the applications of operational amplifier
CO4	Differentiate between the Amplitude and Frequency modulation techniques
CO5	Use the concepts of Boolean algebra to implement the digital circuits
CO6	Discuss the architecture of Microprocessors and Microcontrollers

Mapping of Course Outcomes to Graduate Attributes:

	P01	PO2	P03	P04	PO5	P06	P07	P08	P09	P010	P011	P012
CO1	3	3	-	-	-	-	-	-	-	-	-	-
CO2	3	3	3	-	-	-	-	-	-	-	-	-
CO3	3	3	-	-	-	-	-	-	-	-	-	-
CO4	3	3	3	-	-	-	-	-	-	-	-	-
CO5	3	3	3	-	-	-	-	-	-	-	-	-
CO6	3	-	-	-	-	-	-	-	-	-	-	-

	SYLLABUS		
Module No.	Contents of Module	Hrs	COs
1	Semiconductor Diodes and Applications: P-N Junction diode – its principle, characteristics and parameters, Applications: Half-Wave Rectifier, Full Wave Rectifier(Two Diode, Bridge Rectifier), Zener diode as a voltage regulator. Bipolar Junction Transistor: BJT Operation, BJT Voltages and Currents, Common Emitter Characteristics, Numerical examples as applicable.	9	CO2,CO3
2	BJT Biasing: DC load line, Need for biasing, Voltage divider bias, Numerical examples as applicable. Amplifiers: BJT amplification – BJT as a voltage and current amplifier, voltage gain, current gain, single stage CE amplifier, phase reversal, effect of coupling and bypass capacitors. MOSFET: Introduction to MOSFET theory, Operation and characteristics, Types of MOSFET, Comparison between BJT and MOSFET.	9	CO3, CO4

3	Operational Amplifier & its Applications: Characteristics (Ideal Opamp, Practical Op-amp), Inverting and Non-inverting Amplifier, Voltage follower, Summing Amplifier and Subtractor, Numerical examples as applicable. Oscillators: Basic feedback theory, Positive and Negative feedback, Concept of Stability, Introduction to Oscillators, RC phase shift oscillator. Communication System: Principles of Communication System, Need for Modulation, AM and FM Modulation concept, Modulation index,	9	CO 5
4	Numerical examples. Digital Electronics: Introduction, Number Systems (Decimal, Binary, Hexadecimal, Octal), Conversion from one number system to other, Complement of Binary Numbers, Boolean Algebra Theorems, De Morgan's theorem, Logic gates, Digital Circuits, Algebraic Simplification, NAND and NOR Implementation.	9	CO1
5	Building blocks of a Digital system: Half Adder, Full Adder, Encoder, Decoder, Latch, Flip-Flop, Registers. Introduction to Microprocessors, General operation of Microprocessors, 8085 Microprocessor architecture and working principle. Introduction to Microcontrollers, 8051 Microcontroller architecture and operation, Comparison between Microprocessors and Microcontrollers.	9	CO1, CO6

Text Books:

- 1. Electronic Devices and Circuits, David. A. Bell, 5th Edition, 2008, Oxford University Press.
- 2. Digital Logic and Computer Design, M. Morris Mano, 5th edition, 2002, PHI.

Reference Books:

- 1. Op-amps and linear integrated circuits, Ramakant A. Gayakwad, 4th edition, 2000, Prentice Hall.
- 2. Electronic communication systems, Wayne Tomasi, 5th edition, 2001, Pearsoneducation.
- 3. Microprocessor Architecture, Programming and Applications with 8085, Ramesh Gaonkar, 6th Edition, 2013, Prentice Hall.
- $4. \ \ \, The\,8051\,Microcontroller\,and\,Embedded\,Systems\,using\,Assembly\,and\,C,\,Muhammad\,Ali\,Mazidi,\,2^{nd}\\ Edition,\,2011,\,Pearson.$

Assessment Pattern

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests	Assignment1	Assignment2	Quiz1	Quiz2
Marks (out of 50)	25	7.5	7.5	5	5
Remember	10	-	-	-	-
Understand	7.5	-	-	-	-
Apply	5	7.5	7.5	2.5	2.5
Analyze	2.5	-	-	2.5	2.5
Evaluate	-	-	-	-	-
Create	-	-	-	-	-

SEE- Semester End Examination (50 Marks)

Bloom's Category	Marks(50)
Remember	20
Understand	15
Apply	10
Analyze	5
Evaluate	-
Create	-

ENGINEERING CHEMISTRY LAB

 Course Code: 19CHL17/27
 Credits
 2

 L: T: P : 0:0:2
 CIE Marks
 25

 Exam Hours: 03
 SEE Marks
 25

Course outcomes: On completion of the course, student would be able to:

CO1	Handle different types of instruments for chemical analysis.
CO2	Perform the various types of titrations for quantitative estimation of Industrially important materials.
CO3	Collect experimental data, create graphs, compare the data and draw conclusions.
CO4	Apply laboratory practices such as safety and waste management.

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	3	-	-	-	-	-	-	-	-	-	-	3
CO2	3	-	-	-	-	-	-	-	-	-	-	3
CO3	3	-	-	-	-	-	-	-	-	-	-	3
CO4	3	-	-	-	-	-	-	-	-	-	-	3

S.No	List of Experiments									
	PART A									
1.	Estimation of iron in steel by potentiometry.									
2.	Estimation of copper by colorimetry	1								
3.	Estimation of HCl using standard NaOH by conductometry.	Ī								
4.	Estimation of mixture of acids using standard NaOH by conductometry.	Ī								
5.	Determination of pKa value of a weak acid using pH meter	Ī								
6.	Determination of viscosity coefficient of a given liquid using Ostwald 's viscometer .	Ī								
7.	Estimation of potassium by Flame photometry(Demo).									
	PART B	01,002,&003								
8.	Determination of total hardness of a sample of water by using standard EDTA solution	1,CC								
9.	Estimation of percentage of calcium oxide in cement solution.	3								
10.	Estimation of manganese dioxide in pyrolusite ore.	Ī								
11.	Determination of chemical oxygen demand (COD) of the given industrial waste water sample									
12.	Determination of total alkalinity of a given sample of water using standard hydrochloric									
	acid									

13.	Determination of percentage of iron in haematite ore External indicator method(Demo)	
14.	Innovative experiment designed by student.	

Assessment Pattern

CIE- Continuous Internal Evaluation (25 Marks)

Bloom's Category	Performance in each lab session	Internal Test/Model Exam
Marks(Out of 25)	15	10
Remember	3	2
Understand	6	4
Apply	3	2
Analyze	3	2
Evaluate		
Create		

SEE- Semester End Examination (25 Marks)

Bloom's Category	SEE
Marks	25
Remember	5
Understand	10
Apply	5
Analyze	5
Evaluate	
Create	

PROGRAMMING WITH 'C' LAB

 Course Code
 : 19CSL18/28
 Credits
 2

 L: T: P
 : 0:0:2
 CIE Marks
 25

 Exam Hours
 : 03
 SEE Marks
 25

Outcomes: On completion of the course, student would be able to:

CO #	COURSE OUTCOME
CO1	Develop algorithms and flowcharts to solve computational problems.
CO2	Apply the basic concepts of branching, looping statements of C Language in problem solving.
CO3	Create programs by applying the concepts of functions, arrays and strings.
CO4	Implement programs using structures and files.
CO5	Develop programs using searching and sorting algorithms
CO6	Apply pointer concepts in solving problems.

mapping of course outcomes to Flogram outcomes.												
со	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO1	3	-	-	-	-	-	-	-	3	-	-	3
CO2	3	-	-	-	3	-	-	-	3	-	-	3
СО3	3	3	3	3	3	-	-	-	3	-	-	3
CO4	3	3	3	3	3	-	-	-	3	-	-	3
CO5	3	3	3	3	3	-	-	-	3		-	3
CO6	3	3	3	3	3	-	-	-	3	-	-	3

Expt. No	EXPERIMENTS	COs
1	Write a C program to compute roots of quadratic equation $ax2+bx+c=0$, where a , b , and c are	
	three coefficients of a quadratic equation are inputs.	
2	Design and develop an algorithm to find the <i>reverse</i> of an integer number.	
3	Design and develop an algorithm to check whether given number is PALINDROME or NOT,	
	Implement a C program for the developed algorithm that takes an integer number as input	
	and output the reverse of the same with suitable messages. Ex: Num: 2019, Reverse: 9102, Not	
	a Palindrome.	CO1,
4	Design and develop a c program to implement simple calculator using switch case statement.	CO2,
5	Draw the flowchart and Write a C Program to compute Sin(x) using Taylor series	CO3,
	approximation given by $Sin(x) = x - (x3/3!) + (x5/5!) - (x7/7!) +$	CO4,
6	Develop, implement and execute a C program to search a Number in a list using <i>linear</i>	CO5,
	searching Technique.	CO6
7	Develop an algorithm, implement and execute a C program that reads N integer numbers and	200
	arrange them in ascending order using Bubble Sort.	
8	Design and develop a C program to read and print a matrix and check whether a given	
	Matrix is a sparse Matrix or not.	
9	Write and execute a C program to display Pascal Triangle using for loop.	
10	a. Write a C program to implements the following string manipulation functions till the user	
	wishes to continue (infinite loop):	
	(i) strcpy() (ii) strrev () (iv) strcmp() (v) strcat().	
	b. Read a sentence and print frequency of vowels and total count of consonants.	
11	Design and develop a C function <i>RightRotate</i> (<i>x</i> , <i>n</i>) that takes two integers <i>x</i> and <i>n</i> as input and	
	returns value of the integer <i>x</i> rotated to the right by <i>n</i> positions. Assume the integers are	
40	unsigned.	
12	Draw the flowchart and write a <i>recursive</i> C function to find the factorial of a number, n!, define	
	by $fact(n)=1$, if $n=0$. Otherwise $fact(n)=n^*fact(n-1)$. Using this function, write a C program	
	compute the binomial coefficient nCr . Tabulate the results for different values of n and r wi suitable messages	
13	Given two university information files such as "studentname.txt" and "usn.txt" that contains	
13	students Name and USN respectively. Write a C program to create a new file called	
	"output.txt" and copy the content of files "studentname.txt" and "usn.txt" into output file in the	
	sequence shown below.	
	Display the contents of output file "output.txt" on to the screen.	
	Student Name USN	
	Name 1 USN1	
	Name 2 USN2	
14	a. Write a C program to maintain a record of n student details using an array of structures with	
	four fields (Roll number, Name, Marks, and Grade). Assume appropriate data type for each	
	field. Input & Print the members of the structure	
	b . Write a C program to take 2 structures HH:MM: SS as T1 & T2 & display the time difference	
	as structure as T3.	
15	Write a C program using pointers to compute the sum, mean and standard deviation of all	
	elements stored in an array of n real numbers.	

CIE - Continuous Internal Evaluation: (25 Marks)

Bloom's Category	Performance in each lab session	Internal Test/Model Exam
Marks(Out of 25)	15	10
Remember	2.5	
Understand	2.5	
Apply	5	
Analyze	5	
Evaluate		5
Create		5

SEE - Semester End Examination: (25 Marks)

Blooms Taxonomy	SEE Marks
Marks (Out of 25)	25
Remember	5
Understand	5
Apply	5
Analyze	5
Evaluate	2.5
Create	2.5

ESSENTIAL ENGLISH

(Common for Chemistry Cycle and Physics Cycle in I Semester)

 Course Code
 : 19HSS171
 Credits
 0

 L: T: P
 : 0:0:0
 CIE Marks
 25

 Exam Hours
 : 2
 SEE Marks
 25

Course Outcomes: On completion of the course, student would be able to:

CO1	Understand the grammatical forms and structures in English
CO2	Develop situational vocabulary and apply the same in basic and routine functions.
CO3	Analyze short texts and paraphrase them
CO4	Generate and expand ideas both in the oral and written forms

	P01	P02	P03	P04	P05	P06	P07	P08	P09	POI0	P011	PO12
CO1	-	-	-	-	-	-	-	-	-	3	-	3
CO2	-	-	-	-	-	-	-	-	3	3	-	3
соз	-	-	-	-	-	-	-	-	-	3	-	3
CO4	-	-	-	-	-	-	-	-	-	3	-	3

Module	Module Contents	Hrs	COs
No			
1	Speaking activity Social graces, Greeting, Self-introduction, introducing others Asking for and Giving Information Grammar and Vocabulary in Use:Parts of Speech, Nouns, Pronouns Articles, Asking question. (WH, Aux Verbs)	6	CO1,CO2
2	Speaking activity Speaking about Routine, Hobbies, Likes and Dislikes Grammar and Vocabulary in Use: Verb= Main / Assistant, Forms of Verbs, Tense: Simple present tense Writing exercises: Subject Verb Agreement, Positive and Negative sentences, Question tags	6	CO1,CO2
3	Speaking activity Describing People & Things, Describing Actions Grammar and vocabulary in Use: Adjectives, Adverbs, Articles Tense: Continuous Tenses (Present and Past), Preposition	6	CO1,CO2

4	Reading Comprehension, Sub Skills of Reading Paraphrasing and Summarizing Grammar in use and (situation vocabulary) :Modals, Simple Past tense	6	CO3,CO4
5	Writing Activity Writing Skills: Expansion of Ideas, Dialogue Writing Grammar in use (situational vocabulary): Homonyms, Comparing and Contrasting, Common error in English 1	6	CO3,CO4

Text Books:

- 1. Grammar Practice Activities- Penny Ur, Cambridge University Press
- 2. Intermediate English Grammar Raymond Murphy Cambridge University Press Reference Books:
- 1. Grammar & Composition. New Delhi: S. Chand. ISBN 81-219-2197-X.
- 2. Wren, P.C.; Martin, H., A Final Course of Grammar & Composition, S Chand.

Assessment Pattern:

CIE- Continuous Internal Evaluation (25 Marks)

Bloom's Category	Tests
Marks(out of 25)	25
Remember	5
Understand	5
Apply	5
Analyze	5
evaluate	5
create	-

SEE - Semester End Examination (25 Marks)

Bloom's Category	SEE Marks
Remember	-
Understand	5
Apply	5
Analyze	5
Evaluate	5
Create	5

CONSTITUTION OF INDIA & PROFESSIONAL ETHICS

 Course Code
 : 19HSS172/272
 Credits
 0

 L: T: P
 : 0:0:0:0
 CIE Marks
 25

 Exam Hours
 : 02
 SEE Marks : 25

Course outcomes: On completion of the course, student would be able to:

CO1	Gain knowledge of Indian Constitution and be able to solve the legal and societal issues.
CO2	Acquire the knowledge about Amendment, Electoral Process, Fundamental Duties, Central and State Policies.
CO3	Understand Special Provisions in Indian Constitution and also in Human Rights Commission.
CO4	Understand Engineering Ethics and Responsibilities.

	PO1	P02	P03	P04	P05	P06	P07	P08	P09	PO10	PO11	P012
CO1	-	-	-	-	-	1	-	3	1	-	-	3
CO2	-	-	-	-	-	1	-	3	1	-	-	3
CO3	-	-	-	-	-	1	-	3	1	-	-	3
CO4	-	-	-	-	-	1	-	3	1	-	-	3

	SYLLABUS							
Module No	CONTENTS OF THE MODULE	Hours	COs					
1	INTRODUCTION TO CONSTITUTION OF INDIA Introduction to Constitution of India. The making and salient features oftheconstitution. Thenecessity of the constitution. Preamble to Indian constitution. Fundamental rights and its restrictions and Limitations. Decided case studies. Right to Information Act. Directive principles of state policy.	5	CO1					
2	UNION EXECUTIVE President, prime minister, parliament and supreme court of India. Judicial activism and judicial review. Important parliamentary terminology. Center- state relations. Attorney General of India, Comptroller and Auditor General of India. Fundamental Duties.	4	CO2 & CO3					
3	STATE EXECUTIVE State Executive- Governor, Chief Minister, State Legislature. High Court and Subordinate Court. Advocate General of the State. Controller and Auditor General of State. Electoral process in India. Amendment procedure. Types of amendments- 42, 44, 61, 86, 73, 74, 75, 91, 94, 95, 100, 101, 118 amendments.	4	CO2 & CO3					
4	SPECIAL PROVISION Special provision for SC & ST. Special provision for women, children and backward classes. Emergency provision, citizenship and National Human Rights Commission.		CO4					

5	SCOPE & AIM OF ENGINEERING ETHICS		
	Scope & aim of engineering ethics. Responsibility of engineers, Impediments to		
	responsibility. Clash of ethics. Risk, safety and liability of Engineers. Trust and		
	reliability in Engineering.IPR (Intellectual Property Right).Corporate Ethics.	5	CO5

Text Books:

- 1. Durga DasBasu: "Introduction to the constitution" $19^{th}/20^{th}$ Edn., or 2008, Lexis Nexis; Twentieth edition (2011)
- Shubham Singles, Charles E. Haries: Constitution of India and Professional Ethics. Latest Edition-2018, Cengage Learning India Private Limited (2019)

Reference Books:

- M.Govindarajan, S.Natarajan, V.S.Senthilkumar, Engineering Ethics", Prentice Hall India Learning Private Limited (2013)
- 2. Pylee,"An Introduction to Constitution of India", Vikas Publishing 2002.
- 3. Latest Publication of NHRC- Indian Institute of Human Rights, New Delhi.

ASSESSMENT PATTERN

CIE: Continuous Internal Evaluation (25 Marks)

Bloom's Category	Marks (25)
Remember	15
Understand	05
Apply	05

SEE- Semester End Examination (25 marks)

Bloom's Category	Marks(25)
Remember	15
Understand	5
Apply	5

I YEAR BE SYLLABUS - PHYSICS CYCLE

APPLIED MATHEMATICS-II

(Common for Chemistry Cycle and Physics Cycle in II Semester)

 Course Code
 : 19MAT21
 Credits
 03

 L: T: P
 : 2:1:0
 CIE Marks
 50

 Exam Hours
 : 03
 SEE Marks
 50

Course Outcomes: On completion of the course, student would be able to:

CO1	Understand linear differential equations and their applications
CO2	Formulate real world problems using partial differential equations
CO3	Understand the concept of vectors as a tool for solving engineering problems
CO4	Describe the tests of infinite series
CO5	Apply the basic concepts of Laplace transforms to physical situations
CO6	Solve initial and boundary value problems using Laplace transform and also find the response of the system using Laplace transform method

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	3	3	3	3	3	-	-	-	-	-	-	-
CO2	3	3	3	3	3	-	-	-	-	3	-	3
CO3	3	3	3	3	3	-	-	-	-	-	-	3
CO4	3	3	3	3	3	-	-	-	-	3	-	-
CO5	3	3	3	3	3	-	-	-	1	-	-	3
CO6	3	3	3	3	3	-	-	-	1	-	-	3

COURSE SYLLABUS							
Module	CONTENTS OF THE MODULE	Hours	COs				
No.							
1.	Linear differential equations of second and higher order: Solution of initial						
	and boundary value problems, Inverse differential operator techniques for the	9L					
	functions- e^{ax} , $Sin(ax + b)$, $Cos(ax + b)$ and $ax^2 + bx + c$. Solution of		604				
	Cauchy's and Legendre's homogeneous linear equations and variation of		CO1				
	parameters method.						
	Applications: Electrical Circuits-Simple problems.						
2.	Partial Differential equations: Formation of partial differential equation by						
	eliminating arbitrary constants and functions. Solution of Lagrange's partial						
	differential equation, Solution by separation of variables method.	9L					
	Applications: Solutions of one-dimensional heat, wave and two-dimensional		CO2				
	Laplace equation by separation of variables method.						

3.	Vector Calculus: Gradient, Divergence, Curl-physical significance and problems. Solenoidal and Irrotational vector fields. Vector identities: div(grad Ø), div(Curl A), Curl(grad Ø), div(φA) and curl (φA). Applications: Potential functions, line integral, Problems on Gauss and Greens theorems (without proof and verification) and work done-Problems.	9L	соз
4.	divergence, comparison tests, D'Alembert's ratio test, Cauchy's root test. Alternating series: Absolute and Conditional convergence-problems.	9L	CO4
5.	Laplace Transform and Inverse Laplace Transforms: Definition and Laplace transforms of standard functions. Properties of Laplace transforms: Shiftingproperties, $t^n f(t)$, $\frac{f(t)}{t}$ forms. Periodic functions (without proof), unit-step function-Problems. Inverse Laplace Transform by partial fractions, completing the square method, Problems on Convolution theorem (without proof and verification). Applications of Laplace Transform: Solution of linear differential equations.	9L	CO5 CO6

Text Books:

- $1. \quad Erwin\,Kreyszig, Advanced\,Engineering\,Mathematics, Wiley-India\,Publishers, \\ 10^{th}\,Edition, \\ 2014,\,ISBN: 978-81-265-5423-2.$
- $2. \ \ B.\,S.\,Grewal, Higher\,Engineering\,Mathematics, Khanna\,Publishers, 43^{rd}\,Edition, 2014,\\ ISBN:\,978-81-7409-195-5.$

Reference Books:

- 1. Glyn James, Modern Engineering Mathematics, Prentice Hall, $4^{\rm th}$ Edition, 2015, ISBN: 978-0-273-73409-3
- 2. B. V. Ramana, Higher Engineering Mathematics, McGraw Hill Education (India) Private Limited, 4^{th} Edition, 2016, ISBN: 978-0-07-063419-0.
- H. K. Dass, Advanced Engineering Mathematics, S. Chand & Company Ltd., 28th Edition, 2012, ISBN: 81-219-0345-9.
- N.P.Bali and Manish Goyal, A Text Book of Engineering Mathematics, Laxmi Publications (P)
 Ltd., 9th Edition, 2014, ISBN: 978-81-318-0832-0.

Assessment Pattern:

3. CIE- Continuous Internal Evaluation (50 Marks).

Bloom's Category	Tests (25 Marks)	Assignment1 (7.5Marks)	Assignment2 (7.5Marks)	Quiz1 (5Marks)	Quiz2 (5Marks)
Remember	5	2.5	2.5	-	-
Understand	5	2.5	2.5	-	-
Apply	10	2.5	2.5	5	5
Analyze	2.5	-	-	-	-
Evaluate	2.5	-	-	-	-
Create	-	-	-	-	-

4. SEE- Semester End Examination (50Marks).

Bloom's Category	SEE Marks
Remember	10
Understand	10
Apply	20
Analyze	5
Evaluate	5
Create	-

ENGINEERING PHYSICS

 Course Code
 : 19PHY12/22
 Credits
 : 03

 L: T: P
 : 3:0:0
 CIE Marks
 : 50

 Exam Hours
 : 03
 SEE Marks
 : 50

Course Outcomes: On completion of the course, student would be able to:

CO1	Understand the basic concepts of Quantum Mechanics
CO2	Understand the basic concepts of dielectric and magnetic materials and their applications.
CO3	Apply the fundamental concepts of Lasers and Optical fibers
CO4	Comprehend the underlying principles of conducting and semiconducting materials for various applications.
CO5	Acquire knowledge on Modern Engineering materials and material characterization techniques as applicable to research.
C06	Acquire the ability to analyze, formulate and solve problems.

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	3	2	-	-	2	1	-	-	2	-	-	1
CO2	3	2	-	-	2	1	-	-	2	-	-	1
CO3	3	2	-	-	2	1	-	-	2	-	-	1
CO4	3	2	-	-	2	1	-	-	2	-	-	1
CO5	3	2	-	-	2	1	-	-	2	-	-	1
CO6	3	2	-	-	2	1	-	-	2	-	-	1

	COURSE SYLLABUS					
Module	CONTENTS OF THE MODULE	Hours	Cos			
No.						
1	Quantum Mechanics: Introduction, dual nature of light – mention of Black body radiation, & photoelectric effect, dual nature of matter, de-Brogile hypothesis, matter waves and their characteristic properties, concepts of Phase velocity, Group velocity relation between group velocity and particle velocity, derivation of de-Broglie wavelength from the concept of Group Velocity, Problems. Heisenberg's uncertainty principle - statement, significance, application(non existence of electron in nucleus), wave function, Physical significance of wave function, setting up of Schrodinger Time Independent wave equation in 1 dimension, Eigen values and Eigen functions, Application - Particle in a box (one dimensional) and free particle, Problems.		CO1 CO6			

2	Dielectric & Magnetic Properties		
2	Dielectrics, types, Dielectric constant – importance, effect of applied electric field-polarization, types and temperature dependence of polarization, Polarizability, Internal field (Expression for One dimensional solid), Clausius –Mossotti equation (Derivation), Dielectric loss, expression for tangent loss (tan δ), Dielectric relaxation, frequency dependence of ϵ_r , application of dielectric materials , Problems. Review of magnetic properties, Classification of Magnetic materials (dia, para, ferro), Ferromagnetic Domain theory, B-H curve, Soft and hard magnetic materials, application of magnetic materials.	9	CO2 CO6
3	Lasers& Fiber Optics Introduction, comparison of Laser and ordinary light, Interaction of radiation with matter, comparison of Spontaneous and stimulated emission, Einstein's A and B coefficients, expression for energy density at thermal equilibrium, conditions and requisites of Laser, characteristics of laser, Types - Nd:YAG laser, CO2 laser, and their applications, Holography- principle, recording and reconstruction of image, Introduction to LiFi, Problems. Principle and propagation of light in optical fibers, Numerical aperture and Acceptance Angle, Types of optical fibers (material, refractive index, mode), attenuation, Application of optical fibers: Fiber Optical Communication system (Block diagram) and endoscopy, Problems.	9	CO3 CO6
4	Conductors & Semiconductors Origin of bands in solids – Classification of solids into conductors, semiconductors and insulators based on band theory. Quantum free electron theory, Fermi factor, variation of Fermi factor with Energy at T = 0K, T> 0K, Density of states (qualitative), Fermi dirac distribution (graphical representation), Problems. Introduction of semiconductors , Types (Purity, band gap), conductivity in an intrinsic semiconductor , derivation for electron concentration in intrinsic semiconductor (N_e) and mention of N_h , expression for intrinsic carrier concentration n_i from Law of mass action, expression for position of Fermi level in Intrinsic semiconductors , graphical discussion of variation of fermi level with temperature and concentration in intrinsic and extrinsic semiconductors, Hall Effect and expression for Hall coefficient in n and p type semiconductors(derivation) -applications of Hall effect, Problems	9	CO4 CO6
5	Modern Engineering Materials & Characterization Techniques Modern Engineering Materials: Introduction, Nanomaterials- Introduction, synthesis approach, properties, Applications. Composites – Definition, Classification, Properties and application, Graphene- Introduction, properties and application, Biomaterials: Classification of Biomaterials and its applications. Characterization Techniques: Introduction, importance, XRD- Bragg's Law, derivation, X-ray Diffractometer, Particle size determination. SEM – Principle, Construction, Application and advantages. TEM – Principle, Construction, Application and advantages, Problems.	9	CO5 CO6

Text Book

- 1. Modern Physics by R Murugeshan, KiruthigaSivaprasath, S Chand Publishing, 18th ed. 2016
- Concepts of Modern Physics, Arthur Beiser, 7th Edition, 2017, Tata McGrawHill,

Reference Books

- 1.A Textbook of Solid State Physics, S.O. Pillai, 6th Edition, 2010, New Age International
- 2. Engineering Physics, S.P.Basavaraju, 2018 Edition, SubhasStores
- 3. Engineering Physics, S. Mani Naidu, 2014, Pearson Publication
- 4. Engineering Physics, D K Bhattacharya, poonam Tandon, Oxford university Press, 2015
- 5. Solid State Physics, C Kittel, 8th Edition, 2019, WileyIndian Edition
- 6. Engineering Physics, B. K. Pandey and S. Chaturvedi, 1st edition, 2012, Cengage Publication

Assessment Pattern

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Tests	Assignment1	Assignment2	Quiz1	Quiz2
Marks (out of 50)	25	7.5	7.5	05	05
Remember	7.5				
Understand	10			02	02
Apply	7.5	7.5	7.5	03	03
Analyze					

SEE- Semester End Examination (50 Marks)

Bloom's Category	SEE Marks (50)
Remember	15
Understand	20
Apply	15

ELEMENTS OF MECHANICAL ENGINEERING

 Course Code
 : 19MEE13/23
 Credits
 : 03

 L: T: P
 : 3:0:0
 CIE Marks
 : 50

 Exams Hours
 : 03
 SEE Marks
 : 50

COURSE OUTCOMES: On completion of the course, student would be able to:

CO1	Apply the concepts of conventional and non-conventional energy systems to design and develop alternate source of energy production.
CO2	Analyze the different types of IC engines and refrigeration systems and solve problems related to them.
CO3	Apply appropriate manufacturing techniques for product development in consequent to the professional Engineering practice in Mechanical Engineering.
CO4	Apply the concepts of advanced technology and visualize various ways to create the development of products with the aid of modern tools.
CO5	Understand the impact of various systems, processes and solutions of mechanical engineering in societal and Environmental context.
CO6	Analyze the different Engineering materials for their respective application in various engineering fields and study about their manufacturing processes.

	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO1	3	-	3	-	-	-	-	-	-	-	-	-
CO2	-	1	-	-	-	-	-	-	-	-	-	-
CO3	3	-	3	-	-	2	-	-	-	-	-	-
CO4	3	-	3	-	3	-	1	-	-	3	-	-
CO5	-	-	-	-	-	2	1	-	-	-	-	1
CO6	3	1	3	-	-	-	-	-	-	-	-	-

Syllabus

	SYLLABUS		
Module No	MODULE CONTENTS	Hrs	COs
1	Introduction- Various Energy demands in India. Solar Energy- Types of Solar Energy Utilization, Solar Energy application- Solar Water heater, Space heating of buildings, Solar cooking, Solar in Agriculture. (2 hrs) Wind Power: Utilization of Wind power and hydel power for electric power generation, Installed capacity of hydel and Wind power in India. (1 hr) Bio-diesel a future Technology- Growth in Global Market, advantages, disadvantages, Jatropha biodiesel in India, Process involved in Modern Biodiesel production, Electrical Power generation from Bio-fuels. (3 hrs) Practical session/Practical Case study: (2 hrs) Solar Cooking system in ShirdiSai temple Solar deployment by MNRE	08	CO1
	 Visit to Roto-Dynamics Lab and understanding working of water turbines Self - assessment: Survey on Globally implemented waste-to-energy plant and possibilities in 		
	 Survey on Globally implemented waste-to-energy plant and possibilities in India Survey on Energy production from Gravity 		
2	Parts of IC Engines, Working of Four stroke petrol and four stroke diesel engine, Working of Two-stroke Engine. Microprocessor based Engine Management system, Battery Ignition system, Anti-lock braking system, Parking Assist systems, Automatic Suspension control, Electric vehicles- EV batteries and drive Motors, Hybrid vehicles and its types, Telematics. Practical Case study/Practical Session:(2 hrs) Assembly and disassembly of Engine components Case study GM, Nissan, Ford, Nelco vehicles Self-assessment: Mechatronics and its future Mechatronics in Automotive application	08	CO2
3	Introduction- IC Engine Terminologies, Definition and Calculation on IP, BP, FP, SFC and various Efficiencies for IC Engine- Problems. Design of IC engine components- Bore and length of cylinder, thickness of cylinder head- Problems, Design considerations while designing Piston, Connecting rod and Crank shaft-Only Theory HVAC & R- Modern Refrigerants, Vapour Compression Refrigeration cycle, Domestic Refrigerator. Basic Air cycle, Summer and Winter Air conditioning systems, Psychrometric chart, Parameters to consider while calculating Cooling load and Heating load for building, Split AC unit. Practical Session: Visit to Energy Conversion Lab- Understanding cut section of Engines, Explaining Calculating various engine parameters (demo) Visit to Heat transfer Lab- Understanding VCR & AC cycle (demo) and Showing sample calculation for Room heating and cooling load calculation (demo). Self- assessment: Understand HVAC in Car	10	CO2& CO5

4	Conventional Machining- Lathe, Drilling and Milling operations- Working Principles CNC- Definition, Components of CNC Turning centers and Machining centers, Steps involved in CNC programming, Advantages and disadvantages. Robotics- Anatomy of robot. Robot configurations and links, Joint scheme and notation of robot, Sensors used in Robots, Types of End effectors, Application of Robot in Industries. NTM- Comparison between conventional and non-conventional machining, Classification, LBM- Sketch, working, advantage, disadvantage and application, WJM- Sketch, working, advantage, disadvantage and application. Practical Session: Visiting Advanced Manufacturing Lab and understanding the CNC Turning and Machining process Visiting Machine shop Lab- understanding traditional machining Self- assessment:	9	CO3, CO4
5	Identify the benefits of digital manufacturing Engineering Materials- Introduction, classification, Stress, Strain and Hooke's Law Composites- Introduction, Classification, Metal Matrix composites (MMC) - MMC preparation by Casting process and Powder Metallurgy. Advantages, Disadvantages and Applications of MMC, Nano composites- Introduction, Synthesis by Top and Bottom down approach, Advantages, Disadvantages and Applications. Rapid Prototyping- Definition, Various RP Techniques, Methodology in RP, Application in various Engineering fields- Medical, Automobile. Practical Session: Preparation of Composite laminates for Automotive and Aerospace application using different Reinforcement Testing of Composite materials in Material Testing lab (demo) Self-assessment: Study based on Current and future trends of using composites	9	CO4, CO6

TEXT BOOKS:

Module-1

- G. D. Rai, Non Conventional Energy Sources, Khanna Publishers, Fouth Edition- 2008, ISBN No. 81-7409-073-8
- Jan C.J. Bart, N Palmeri, Stefano Cavallaro, Biodiesel Science and Technology: From Soil to Oil, CRC Press- Wood head Publishing Limited, 2010, ISBN 978-1-4398-2730-7

Module-2

- K. R. Gopalakrishna, Elements of Mechanical Engineering, Subhas Publications, Bangalore, 2017, ISBN-13: 5551234091781
- 2. Tom Denton, Automobile Electrical and Electronic systems, ELSEVIER, $3^{\rm rd}$ edition, 2004, ISBN 0 7506 62190

Module-3

- K. R. Gopalakrishna, Elements of Mechanical Engineering, Subhas Publications, Bangalore, 2017, ISBN-13: 5551234091781
- 2. R S Khurmi and J K Gupta, A Text book Machine Design, EURASIA PUBLISHING HOUSE (PVT.) LTD., 2005
- 3. P K Ananthanarayanan, Basic Refrigeration and Air conditioning, Tata McGraw Hill Publication, 2005, ISBN 0-07-049500-9
- 4. Edward G Pita, Air conditioning principles and systems: an energy approach, Prentice Hall, 4^{th} edition, ISBN 0-13-092872-0

Module-4

1. M. P. Groover, Automation, Production System & Computer Integrated Manufacturing, Person India,

- 4th Ed, ISBN-13: 978-9332572492
- $2. \quad Vijay \ K \ Jain, Advanced \ Machining \ Processes, Allied \ Publishers \ Pvt. \ Limited, 2002, ISBN \ 81-7764-294-4 \\ \textbf{Module-5}$
 - Autarkaw, Mechanics of Composite Materials, 2ndEdition, CRC Press Published November 2, 2005, ISBN 9780849313431
 - 2. Frank W Liou, Rapid Prototyping and Engineering Applications: A Toolbox for Prototype Development, 2016,ISBN-13: 978-0849334092

Assessment Pattern

CIE- Continuous Internal Evaluation for theory (50 Marks)

Bloom's Category Marks (out of 50)	Tests	Assignment1	Assignment2	Quiz1	Quiz2
	25	7.5	7.5	5	5
Remember	10				
Understand	10	3.5	3.5		
Apply	05	4	4	5	5
Analyze					
Evaluate					
Create					

SEE - Semester End Examination (50 Marks)

Bloom's Category	SEE Marks
Remember	15
Understand	15
Apply	10
Analyze	10
Evaluate	
Create	

ELEMENTS OF CIVIL ENGINEERING

 L: T: P
 : 3:0:0
 CIE Marks : 50

 Exam Hours
 : 03
 SEE Marks : 50

Course Outcomes: On completion of the course, student would be able to:

CO1	Summarize the scope of Civil Engineering and apply the laws of mechanics to analyze engineering Problems
CO2	Apply the concept of moment and couple to solve numerical problems.
CO3	Determine the equilibrium of concurrent and non - concurrent force system
CO4	Analyze the behavior of ladder, wedge and stationary block under the action of frictional force
CO5	Identify the position of centroid and compute the moment of inertia of regular cross sections.
C06	Interpret the relative motion between bodies.

	P0 1	P 0 2	P0 3	PO 4	P0 5	P06	P 0 7	P 08	P09	P010	P0 11	P01 2	PS 0 1	PS O2
CO1	3	2	1	1	-	-	-	-	-	-	1	1	3	-
CO2	3	2	1	1	-	-	-	-	-	-	-	1	3	-
CO3	3	2	1	1	-	-	-	-	-	-	-	1	3	-
CO4	3	2	1	1	-	-	-	-	-	-	-	1	3	-
CO5	3	2	1	1	-	-	-	-	-	-	-	1	3	-
CO6	3	2	1	1	-	-	-	-	-	-	i	1	3	-

	SYLLABUS						
Module No	Contents of Module	Hrs	Cos				
1	SCOPE OF CIVIL ENGINEERING Housing, Roads, Bridges and Dams, Basic Introduction of Building Materials – cement, bricks/blocks, aggregate(s), timber, steel, composites, Components of a structure - Substructure, Super structure and Finishes. INTRODUCTION TO ENGINEERING MECHANICS Principle of statics, Particle, continuum, Rigid body, Force and its characteristics, Types of forces and classification of force systems, Principle of physical independence of forces, Principle of transmissibility of forces, Principle of superposition of forces, Composition of forces - Definition of Resultant; Composition of coplanar concurrent force system, Parallelogram law of forces, Resolution of forces.	10	CO1				
2	MOMENT OF A FORCE Couple, Characteristics of couples, Varignon's theorem of moments, Composition of coplanar- non-concurrent force system, Equivalent force - couple system, Numerical problems on composition of coplanar non- concurrent force systems. EQUILIBRIUM OF CONCURRENT FORCE SYSTEM Equilibrium of concurrent, parallel and general forces in a plane, equilibrium of three forces in a plane, Definition of equilibrant, Lami's theorem; Resultant and equilibrium of concurrent and parallel forces in space, Numerical problems on equilibrium of coplanar – concurrent and non-concurrent force systems.	8	CO2, CO3				
3	EQUILIBRIUM OF NON- CONCURRENT FORCE SYSTEM Introduction to beams, Types of loads and supports, Support reactions, statically determinate beams with point load (normal and inclined) and uniformly distributed/varying loads, Numerical problems. FRICTION Friction-static friction, Laws of friction, Limiting friction, Angle of friction, angle of repose, Impending motion on horizontal and inclined planes, Ladder and block friction, Numerical problems.	8	CO3, CO4				
4	CENTROID Centroid of line and area, Centroid of regular figures, Locating the centroid of triangle, semicircle, quadrant of a circle and sector of a circle using method of integration, centroid of composite sections; Numerical problems. MOMENT OF INERTIA Second moment of area, polar moment of inertia, Radius of gyration, Perpendicular and Parallel axis theorems, Moment of Inertia of rectangular, circular and triangular areas from method of integration, composite sections, Numerical problems.	9	CO5				

	KINETICS-		
	Newton's second law of motion and D'Alemberts principle		
5	for rectilinear motion of a particle, Numerical problems.	9	CO6
	KINEMATICS		
	Definitions, Displacement, average velocity Instantaneous velocity		
	Speed- Acceleration - Average acceleration - Variable acceleration,		
	Acceleration due to gravity – Newton's Laws of Motion.		

TEXT BOOKS

- 1. Elements of Civil Engineering and Engineering Mechanics by M.N.Shesha Prakash and Ganesh.B.Mogaveer, PHI Learning, 3rdRevisededition(2014)
- 2. Engineering Mechanics-Statics and Dynamics by A Nelson, Tata McGraw Hill Education Private Ltd, New Delhi, 2009.
- 3. Elements of Civil Engineering (IV Edition) by S.S.Bhavikatti, New Age International Publisher, New Delhi, 3rd edition 2009

REFERENCE BOOKS

- Engineering Mechanics by S.Timoshenko, D.H.Young, and J.V.Rao, TATA McGraw-Hill Book Company, New Delhi.
- 2. Beer FP and Johnson ER, "Mechanics for Engineers- Dynamics and Statics"- 3rd SI Metric edition, Tata McGraw Hill. –2008.
- 3. Shames I H, "Engineering Mechanics-Statics & Dynamics"-PHI-2009.

CIE Continuous Internal Evaluation (50 Marks)

Blooms Category	Tests	Assignment1	Assignment2	Quiz 1	Quiz 2
Marks out of 50	25	7.5	7.5	5	5
Remember	2	1	1	1	1
Understand	7	2.5	2.5	2	2
Apply	13	3	3	2	2
Analyze	3	1	1		
Evaluate	-	-	-	-	-
Create	-	-	-	-	-

SEE-Semester End Examinations (50 Marks)

Blooms Category	SEE Marks
Remember	10
Understand	10
Apply	20
Analyze	10

BASIC ELECTRICAL ENGINEERING

 Course Code
 : 19EE15/25
 Credits
 03

 L: T: P
 : 3:0:0
 CIE Marks
 50

 Exam Hours
 : 03
 SEE Marks
 50

Course Outcomes: On completion of the course, student would be able to:

CO1	Solve DC circuits using simple network reduction methods.
CO2	Analyze single phase and three phase systems and compute various parameters.
CO3	Select the appropriate energy conversion technique based on the application.
CO4	Deploy electrical utilities with appropriate protection and energy saving techniques.
CO5	Assess the performance characteristics of measurement systems.
CO6	Evaluate and choose the measuring instruments based on the parameters to be measured.

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	3	3	-	2	1	-	-	-	-	-	-	-
CO2	3	3	-	2	1	-	-	-	-	-	-	-
CO3	3	3	-	2	1	-	-	-	-	-	-	-
CO4	3	3	-	2	1	-	-	-	-	-	-	-
CO5	3	3	-	2	1	-	-	-	-	-	-	-
CO6	3	3	-	2	1	-	-	-	-	-	-	-

	SYLLABUS							
Module No.	Module Contents	Hours	COs					
1	DC Circuits Introduction to Electrical Engineering Concepts of DC circuits–Ohm's Law–Resistance, Temperature Coefficient of Resistance, Power and Energy–Series and parallel circuits–star/delta conversion–Kirchhoff's laws	9	C01					
2	AC Circuits Concepts of AC circuits-RMS value, average value, form factor and peak factor-Single phase circuits (R,L,C,RL,RC,RLC)-Power Triangle -power factor Concepts of Three phase circuits -Relation between line and phase quantities in star and delta connected balanced systems-Measurement of Power and Power factor by two wattmeter method	9	CO2					
3	Electromagnetic Induction and Energy Conversion Faraday's Law of Electromagnetic Induction–Self and Mutually induced emfs– Statically induced and dynamically induced emfs–Self and Mutual Inductances– Simple Problems Construction and Working Principle–DC generator and motor–Single Phase Transformer–Synchronous generator–Single phase induction motor–Three phase induction motor	9	C03					

4	Electric Utilities and Protection Different sources of Electrical Energy–Single Line Diagram of Power System– Electrical tariff–Energy audit–Energy Conservation–Basic elements in electrical wiring (Service mains, meter board and Distribution board, Concealed conduit wiring, Two way and Auditorium wiring)– Protection (Fuse & MCB)– Electric Shock and prevention–Earthing (Pipe & Plate)	9	CO4
5	Measurement and Instrumentation Functional elements of measuring instruments-Types of measuring instruments - Standards , Errors and calibration Principle and types of analog and digital voltmeters, ammeters, multimeters-Single and three phase wattmeters and energy meters - Current and Potential transformers	9	CO5, CO6

Text Books:

- 1. Metha. V.K, Rohit Metha, "Basic Electrical Engineering", Fourteenth edition, S.Chand Publishing
- 2. DC Kulshreshtha, "Basic Electrical Engineering", TMH, 2009 edition
- 3. Bhattacharya.S.K, "Basic Electrical and Electronics Engineering", Pearson Education, 2011
- 4. J. B. Gupta, "A Course in Electronic and Electrical Measurements", S. K. Kataria& Sons, Delhi, 2011.

Reference Books:

- Dash.S.S, Subramani.C, Vijayakumar.K, "Basic Electrical Engineering", Second edition, Vijay Nicole Imprints Pvt. Ltd, 2015
- $2. \quad P.S.\ Dhogal, "Basic\ Electrical\ Engineering-Vol.\ I\&\ II", 42nd\ Reprint, McGraw-Hill, 2012$
- 3. H. S. Kalsi, "Electronic Instrumentation", Tata McGraw Hill, Third Edition, 2012
- 4. J.B.Gupta, "Explanations/Solutions to an Integrated Course in Electrical Engineering", S. K. Kataria & Sons, 2018.

Assessment Pattern

CIE- Continuous Internal Evaluation (50 Marks)

Bloom's Category	Test	Assignment-1	Assignment-2	Quiz-1	Quiz-2
Marks(Out of 50)	25	7.5	7.5	5	5
Remember	5	-	-	1	1
Understand	5	-	-	1	1
Apply	10	4	4	2	2
Analyze	5	3.5	3.5	1	1
Evaluate	-	-	-	-	-
Create	-	-	-	-	-

SEE- Semester End Examination (50 Marks)

Bloom's Category	SEE Marks
Remember	10
Understand	10
Apply	20
Analyze	10
Evaluate	-
Create	-

ENGINEERING PHYSICS LAB

 Course Code
 : 19PHL16/26
 Credits
 : 02

 L:T:P
 : 0:0:2
 CIE Marks
 : 25

 Exams Hours
 : 03
 SEE Marks
 : 25

Course Outcomes: On completion of the course, student would be able to:

CO1	Apply scientific methods and make use of experimental methods to verify theoretical concepts.
CO2	Apply analytical techniques and graphical analysis to the experimental data.
CO3	Gain practical knowledge by applying the experimental methods to correlate with the theory behind optics, dielectrics, magnetic and conducting and semiconducting materials.
CO4	Develop skills required for team work, technical communication and discussions.

Mapping of Course Outcomes to Program Outcomes:

CO/	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO	P011	P012
PO										10		
CO1	3	2	2	-	2	1	-	-	2	-	-	1
CO2	3	2	2	-	2	1	-	-	2	-	-	1
CO3	3	2	2	-	2	1	-	-	2	-	-	1
CO4	3	2	2	-	2	1	-	-	2	-	-	1

Exp.No	Experiments	Cos
1	Determination of Planck 's constant usingLED	
2	Stefan's Law: To verify Stefan'sLaw	
3	B - H Curve: To draw the B – H curve and to determine the coercivity and retentivity of the given ferromagnetic material	
4	Dielectric constant: To determine the dielectric constant ofgiven dielectric by charge and dischargemethod	
5	Laser Diffraction: To determine the wavelength of Laserusing grating	
6	Numerical Aperture: To determine the numerical apertureof Optical Fiber	0,7
7	Fermi Energy: To determine the Fermi energy ofcopper.	3, 6
8	Zener Diode Characteristics: To study the V-I characteristics of Zenerdiode and the reverse Zener break downvoltage	CO1,CO2,CO3, CO4
9	Photodiode Characteristics: To study the V-I characteristics of photo diode for different light intensity in reverse biascondition	C01,C
10	Transistor Characteristics: To study the input andoutput characteristics of a pnp transistor in CE configuration and find the gain factor.	
11	Energy Gap: To find the energy gap of a givensemiconductor.	
12	Hall Effect: To measure Hall Coefficient ofmaterials.(Demonstration)	
13	Resistivity : Four Probe method	
14	Determination of lattice parameters using Powder Diffraction pattern.	

Note: To perform a minimum of 12 experiments in a semester

CIE- Continuous Internal Evaluation (25 Marks)

Bloom's Category	Performance(day to day)	Internal test
Marks (out of 25)	10	15
Remember	02	02
Understand	03	03
Apply	03	05
Analyze	02	05

SEE- Semester End Examination (25 Marks)

Bloom's Category	SEE Marks
Remember	05
Understand	10
Apply	05
Analyze	03
Evaluate	02

BASIC ELECTRICAL ENGINEERING LAB

 Course Code
 : 19EEL17/27
 Credits
 02

 L: T: P
 : 0:0:2
 CIE Marks
 25

 Exam Hours
 : 03
 SEE Marks
 25

Course Outcomes: On completion of the course, student would be able to:

CO1	Verify ohm's law, kirchhoff's laws and determine effective resistance.
CO2	Analyze the behavior of DC motor, three phase induction motor and single phase transformer on load.
CO3	Use appropriate instruments for measurement of various electrical quantities in single phase
	circuits, and compute three phase power using wattmeters.
CO4	Install appropriate electrical wiring with the selection of protection devices for a residential
	building.

CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	3	3	2	2	1	-	-	-	2	2	-	-
CO2	3	3	2	2	1	-	-	-	2	2	-	-
СО3	3	3	2	2	1	-	-	-	2	2	-	-
CO4	3	3	2	2	1	-	-	-	2	2	-	-

Exp. No.	Experiments	Cos		
1	Verification of Ohm's Law			
2	Verification of Kirchhoff's laws	CO1		
3	3 Determination of equivalent resistance using Series-Parallel combination			
4	Determination of equivalent resistance using Star-Delta transformation			
5	Speed Control of DC Shunt Motor			
6	Load Test on DC Shunt Motor	CO2		
7	Speed control of 3 φ Induction motor using VFD and measurement of F, V & I			
8	Load Test on Single Phase Transformer			
9	Measurements of Electrical Quantities- Voltage, Current, Power and Power			
	Factor in RLC Circuit	CO3		
10	Measurement of 3φ Power	LU3		
11	Residential House Wiring using Switches, Fuse, Indicator and Lamp			
12	Staircase Wiring and Fluorescent Wiring			
13	Study of Circuit Protective Devices (MCB and Fuse)	CO4		
14	Study and troubleshooting of Electrical Equipment (Fan, Iron Box and Mixer)			

Assessment Pattern

CIE- Continuous Internal Evaluation (25 Marks)

Bloom's Category	Performance(day to day)	Internal Test
Marks(Out of 25)	10	15
Remember	02	02
Understand	03	03
Apply	03	05
Analyze	02	05
Evaluate	-	-
Create	-	-

SEE- Semester End Examination (25 Marks)

Bloom's Category	SEE Marks
Remember	3
Understand	5
Apply	9
Analyze	8
Evaluate	-
Create	-

PROFESSIONAL COMMUNICATION

(Common for Chemistry Cycle and Physics Cycle in II Semester)

 Course Code
 : 19HSS271
 Credits
 02

 L: T: P
 : 2:0:0
 CIE Marks
 25

 Exam Hours
 : 2
 SEE Marks
 25

Course Outcomes: At the end of the course, student would be able to:

C01	Understand the concepts, process and importance of communication
C02	Articulate ideas using appropriate nonverbal cues
C03	Apply suitable vocabulary in specific contexts.
C04	Develop competencies to communicate professionally at the workplace

	P01	PO2	РО3	P04	PO5	P06	P07	P08	P09	POI0	P011	PO12
CO1	-	-	-	-	-	-	-	-	-	3	-	3
CO2	-	-	-	-	-	-	-	-	3	3	-	3
CO3	-	-	-	-	-	-	-	-	-	3	-	3
CO4	-	-	-	-	-	-	-	3	3	3	-	3

Module No	Module Contents	Hours	COs
1	Communication Skills:Definition, Types, Purpose and Process of Communication Importance of Listening:Listening vs. Hearing, Traits of a Good Listene Listening sub skills, Listening and Paraphrasing	4	CO1,CO2 CO3,CO4
2	Language and Vocabulary: Vocabulary and Context, Thematic vocabulary, Synonyms, Homonyms and Homophones Writing activities: Idioms and Phrases, Descriptivewriting using Simile, Metaphors Grammar:Active& Passive Voice, Cloze Exercises, Sentence Completion Exercises	6	CO1,CO2 CO3,CO4
3	Non—verbal communication (Body Language): Kinesics, Occulesics, Paralanguage & Body Language across Cultures Presentation Skills: Organising a speech, Use of Discourse Markers, Use of Cohesive Devices, Fluency Development Activities, Speaking Practice, Group Presentation, Expressing Opinions, Agreeing and Disagreeing	8	CO1,CO2 CO3,CO4

4	Speaking Activities: Single Point Debates, Expressing Contra Views, Asking for and Giving Reasons, Inferring information from text, Reporting, Sequencing, Summarizing data from Charts, Graphs, and Tables etc. Grammar: Common Errors in English – 2	6	CO1,CO2 CO3,CO4
5	Written Communication: 7Cs of Communication, Difference between Business Communication an General Communication, Business Letter Writing, Different Categories of Business Letters, Email Writing, Paragraph Writing	6	C01,C02 C03,C04

Text Books:

- 1. Basic Business Communication Flatley and Lesikar ,Tata McGraw Hill 10th Edition
- 2. Business Communication P.D. Chaturvedi and MukeshChaturvedi Pearson Education

Reference Books:

1. The Skills of Communicating. Bill Scott and Helen Wilkie Jacob Books

Assessment Pattern:

CIE- Continuous Internal Evaluation (25 Marks)

Bloom's Category	Tests	Assignment	Presentation
Marks(out of 25)	10	10	5
Remember	1	-	-
Understand	2	-	-
Apply	3	5	-
Analyse	2	-	-
evaluate	-	-	-
create	2	5	5

SEE - Semester End Examination (25 Marks)

Bloom's Category	SEE Marks
Remember	5
Understand	5
Apply	5
Analyze	-
Evaluate	-
Create	10

