

Permanently affiliated to VTU, approved by AICTE & ISO 9001:2008 certified The Trust is a Recipient of Prestigious Rajyotsava State Award 2012 Conferred by the Government of Karnataka **Awarded Outstanding Technical Education Institute in Karnataka-2014** Ring Road, Bellandur Post, Near Marathalli, Bangalore -560 103, INDIA, Fax: +91-80-2844 0770

(An Autonomous Institution Affiliated to VTU)

Academic Year 2016-17

First and Second Semesters

Bachelor of Engineering (B.E)

(Common to all Branches)

Scheme and Syllabus

CONTENTS

- 1. First Semester- Credit Scheme for Chemistry and Physics Cycle
- 2. Second Semester- Credit Scheme for Chemistry and Physics Cycle

CHEMISTRY CYCLE SYLLABUS

3.	Engineering Mathematics I (common to both cycles)	6
4.	Engineering Chemistry	9
5.	Introduction to Programming with "C"	13
6.	Computer Aided Engineering Drawing	18
7.	Basic Electronics	21
8.	Environmental Science and Awareness	24
9.	Essential English	27

PHYSICS CYCLE SYLLABUS

10. Engineering Mathematics II (Common to both cycles)	30
11. Engineering Physics	33
12. Elements of Mechanical Engineering	38
13. Elements of Civil Engineering	43
14. Basics of Electrical Engineering	46
15. Business communication	49
16. Constitution of India and professional ethics	51

		FIRST SI	EMESTE	R- C	CHE	MIS	STR	Y CYCLI	E			
SI.	Course		BOS	Credit Distribution				Overall	Contact	Marks		
No	Code	Course		L	Р	Т	S	Credits	Hours	CIE	SEE	Total
1	15MAT11	Engineering Mathematics-I	MAT	4	0	1	0	5	6	50	50	100
2	15CHE12	Engineering Chemistry	CHE	3	1	0	1	5	5	75	75	150
3	15CSE13	Introduction to Programming with C	CSE	3	1	0	1	5	5	75	75	150
4	15MEE14	Computer Aided Engineering Drawing	MEE	2	1	1	0	4	6	50	50	100
5	15ECE15	Basic Electronics	ECE	3	0	1	0	4	5	50	50	100
6	16HSS161	Environmental Science and Awareness	HSS	2	0	0	0	2	2	50	50	100
7	15HSS171			Mandatory Course		0	2	25	25	50		
		Total		•				25	31	375	375	750

	FIRST SEMESTER- PHYSICS CYCLE											
SI.	Course	Course	BOS	Credit Distribution				Overall	Contact	Marks		
No	Code			L	Р	Т	S	Credits	Hours	SEE	CIE	Total
1	15MAT11	Engineering Mathematics-1	MAT	4	0	1	0	5	6	50	50	100
2	15PHY12	Engineering Physics	PHY	3	1	0	1	5	5	75	75	150
3	15MEE13	Elements of Mechanical Engineering	MEE	3	1	0	1	5	5	75	75	150
4	15CIV14	Elements of Civil Engineering	CIV	3	0	1	0	4	5	50	50	100
5	15EEE15	Basics of Electrical Engineering	EEE	3	0	1	0	4	5	50	50	100
6	15HSS162	Business Communication	HSS	2	0	0	0	2	2	50	50	100
7	15HSS172	Constitution of India and Professional Ethics	HSS	N	fanc Coi	lato urse	•	0	2	25	25	50
		Total		•				25	30	375	375	750

		SECOND	SEMEST	ER-	CH	EM	IST	RY CYCI	LE			
SI.	Course	Course	BOS	Credit Distribution				Overall	Contact	Marks		
No	Code		L P T S Credits Hou	Hours	CIE	SEE	Total					
1	15MAT21	Engineering Mathematics- II	MAT	4	0	1	0	5	6	50	50	100
2	15CHE22	Engineering Chemistry	CHE	3	1	0	1	5	5	75	75	150
3	15CSE23	Introduction to Programming with C	CSE	3	1	0	1	5	5	75	75	150
4	15MEE24	Computer Aided Engineering Drawing	MEE	2	1	1	0	4	6	50	50	100
5	15ECE25	Basic Electronics	ECE	3	0	1	0	4	5	50	50	100
6	16HSS261	Environmental Science and Awareness	HSS	2	0	0	0	2	2	50	50	100
7	15HSS271	Essential English	HSS	N		latoi urse	•	0	2	25	25	50
		Total						25	31	375	375	750

		SECO	ND SEME	STE	R- 1	PHY	SIC	CS CYCLI	E					
Sl. No	Course Code	Course	BOS	D	Credit Distribution				n	Overall Credits	Contact Hours		Marks	
				L	Р	Т	S			SEE	CIE	Total		
1	15MAT21	Engineering Mathematics -II	MAT	4	0	1	0	5	6	50	50	100		
2	15PHY22	Engineering Physics	PHY	3	1	0	1	5	5	75	75	150		
3	15MEE23	Elements of Mechanical Engineering	MEE	3	1	0	1	5	5	75	75	150		
4	15CIV24	Elements of Civil Engineering	CIV	3	0	1	0	4	5	50	50	100		
5	15EEE25	Basics of Electrical Engineering	EEE	3	0	1	0	4	5	50	50	100		
6	15HSS262	Business Communication	HSS	2	0	0	0	2	2	50	50	100		
7	15HSS272	Constitution of India and Professional Ethics	HSS		anda ours		у	0	2	25	25	50		
		Total		•				25	30	375	375	750		

CHEMISTRY CYCLE

ENGINEERING MATHEMATICS-I

Course Code : 15MAT11	Credits	05
L:P:T:S : 4:0:1:0	CIEMarks	50
Exam Hours : 03	SEE Marks	50

Course Outcomes: At the end of the Course, the Student will be able to do the following:

C01	Learn the principles of engineering mathematics through calculus
CO2	Find the extreme values of a function of two variables
CO3	Understand the concept of vectors as a tool for solving engineering problems
C04	Understand the concept of Integration as a tool for solving engineering problems
CO5	Develop the ability to construct mathematical models involving differential equations and interpret their solutions physically
C06	Apply ideas from linear algebra in solving systems of linear equations

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	3	3	3	-	-	-	-	-	-	2	-	3
CO2	3	3	3	-	2	-	-	-	-	-	-	3
CO3	3	3	3	2	-	-	-	-	-	-	-	3
C04	3	3	3	-	-	-	-	-	-	2	-	3
C05	3	3	3	2	2	-	-	-	-	2	-	3
C06	3	3	3	-	-	-	-	-	-	-	-	3

	Syllabus							
Module	Contents of the Module	Hour	COs					
1	Solid Geometry : Recapitulation of planes, straight lines. Right							
	circular cone and right circular cylinder.							
	Polar Curves: - Angle between the radius vector and tangent, angle	0	001					
	between two curves, Pedal equation for polar curves. Taylor"s and	9	CO1					
	Macluarin"s theorems for function of one variable (statement only)-							
	problems.							
2	Partial derivatives: Definition and simple problems, Euler"s theorem							
	- problems(No extended theorem), total derivatives, partial							
	differentiation of composite functions, Jacobians - definition and		CO2					
	problems.	9						
	Applications: Extreme values of functions of two variables.							

2	Wester Colorbor Costenant Western sint for the Costing				
3	Vector Calculus:-Scalar and Vector point functions, Gradient,				
	Divergence, Curl, Solenoidal and irrotational vector fields. Vector				
	identities.				
	Orthogonal curvilinear coordinates -Orthogonality of cylindrical an	9	CO3		
	spherical coordinate systems, expressions for vectors in cylindrical				
	and spherical coordinate systems, problems (no proof).				
	Applications: Potential functions, line integral and work done.				
4	Integral Calculus: Reduction				
	formulae $\int \sin^n x dx$, $\int \cos^n x dx$ and $\int \sin^m x \cos^n x dx$ - (m and n are				
	positive integers), evaluation of these integrals with standard limits (0				
	to $\pi/2$) and problems.				
	Curve Tracing - tracing for Cartesian and polar curves : (i) Cissoi				
	(ii) Strophiod (iii) Cardioid (iv) Lemniscateand (v) three and four				
	leaved rose.				
	Differential Equations ;- Solution of first order and first degree				
	differential equations – Linear and Bernoulli"s differential equations.				
	Applications- Newton"s law of cooling, flow of electricity, laws of				
	decay, growth and mixing problem.				
5	Linear Algebra: Rank of a matrix by elementary transformations,	9	CO5,		
	solution of system of linear equations - Gauss-elimination method,		CO6		
	Gauss-Jordon method and L-U decomposition method. Linear				
	transformation, diagonalisation of a square matrix, Quadratic forms,				
	reduction to Canonical form by orthogonal transformation				
I			1		

Text Books:

1. Advanced Engineering Mathematics, Erwin Kreyszig, 10th edition,2014, Wiley-India Publishers.

2. Higher Engineering Mathematics, B.S.Grewal, 43nd edition, 2014, Khanna Publishers.

Reference Books:

1. Advanced Modern Engineering Mathematics, Glyn James, 4th edition, 2015, Pearson Education.

2. Advanced Engineering Mathematics, Dennis G. Zill, Michael R. Cullen, 4th edition, 2015, Jones and Barlett Publishers Inc.

3. Engineering Mathematics, B. V. Ramana, 4th edition, 2005, Tata McGraw Hill Publications.

4. Engineering Mathematics, Anthony Craft, 4th edition, 2013, Pearson Education.

Assessment Pattern

1. CIE- Continuous Internal Evaluation (50 Marks)

Bloom"s Category	Tests (30 Marks)	Assignments (10 Marks)	Quizzes (10 Marks)
Remember	10	3	5
Understand	5	5	5
Apply	5	2	
Analyze	5		
Evaluate	5		
Create			

2. SEE- Semester End Examination (50 Marks)

Bloom"s Category	Questions (50 Marks)
Remember	10
Understand	10
Apply	20
Analyze	5
Evaluate	5
Create	

ENGINEERING CHEMISTRY

Course Code : 15CHE12/22 L:P:T:S : 3:1:0:1 Exam Hours : 03

Credits: 05CIE Marks: 50+25SEE Marks: 50+25

COURSE OUTCOMES: At the end of the Course, the Student will be able to:

C01	Understand the chemistry behind engineering materials in various devices which are in the service of mankind.				
CO2	Analysis of existing problems and solutions with respect to engineering materials, energy production and other natural resources.				
CO3	Evaluate the various parameters that decide the performance and usage of materials and devices.				
CO4	Acquire technical competence in industries with respect to corrosion and metal finishing.				
C05	Conception and implementation of alternative technologies and methods to exploit resources in an efficient way.				
C06	Analyze chemical reactions according to stoichiometric methodology and to be able to predict the outcome of reactions and their applications.				

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	3	-	-	-	-	-	-	-	-	-	-	3
CO2	3	3	-	-	-	-		-	-	-	-	3
CO3	3	3	-	-	-	-	3	-	-	-	-	3
CO4	3	3	-	-	-	-		-	-	-	-	3
CO5	3	3	-	-	-	-	3	-	-	-	-	3
C06	3	-	-	-	-	-	3	-	-	-	-	3

Module	Contents of the Module	Hours	COs
1	Electrochemistry and Battery Technology	9	
	Electrochemistry: Introduction- Derivation of Nernst equation for single electrode potential, working and construction of calomel and silver-silver chloride electrodes, applications. Measurement of standard electrode potential using calomel electrode. Electrolyte concentration cells, numerical problems, construction and working of glass electrode, determination of pH using glass electrode.		CO1, CO6
	Battery Technology: Introduction, Classification- primary, secondary and reserve batteries, construction, working and applications of Lead – acid battery, Zn-Air and Li-ion batteries. Fuel cells: Definition, construction, working and applications of hydrogen-oxygen fuel cell.		ŭ

	List of Experiments	6	
	1. Potentiometric estimation of FAS		
2	2. Determination of pKa value of a weak acid using pH meter Corrosion and Metal Finishing	9	
	Corrosion: Introduction, electrochemical theory of corrosion, Factors affecting rate of corrosion, anodic and cathodic area, Nature of metal, Nature of corrosion product, pH. Types of corrosion –differential metal, differential aeration (water line and pitting) and stress corrosion. Corrosion control-Design and selection of materials, Protective coatings, organic coatings (brief introduction), inorganic coatings, Metal coatings-Galvanization and Tinning. Anodizing of aluminum and Phosphating,		C04, C06
	Metal Finishing - Introduction, Technological importance. Principles governing electroplating – Polarisation, Decomposition potential and Over voltage. Electro plating –Introduction, factors influencing the nature of electro deposit - current density, plating bath (metal ion and electrolyte concentrations), Complexing agents, pH and throwing power. Electro plating of Chromium. Electroless plating – Introduction, Distinction between Electro plating and Electroless plating, Electroless plating of Copper and manufacture of PCB.		C04,
	List of Experiments	12	
	 Determination of percentage of iron in given sample of haematite ore solution. Determination of percentage of copper in brass using standard sodium thiosulphate Solution (Brass solution to be given) Determination of percentage of CaO in Cement solution using std EDTA solution. Colorimetric determination of copper/ Iron 		
3	Chemical Energy Sources and Photovoltaic Cells		
	 Chemical Fuels: Definition, classification, importance of hydrocarbon fuels, calorific value–Gross and Net calorific value. Determination of Calorific value of fuel using Bomb calorimeter-Numerical problems. Cracking – Fluidized catalytic cracking, reformation of petrol, Octane and Cetane Numbers. Gasoline knocking and mechanism, anti knocking agents, unleaded petrol, Power alcohol and Biodiesel. Photovoltaic cells: Introduction, importance, construction and working of PV cells, advantages and disadvantages of PV cells. Production of solar grade silicon by union carbide process and purification of silicon by zone refining. 	8	C02,C03& C05
	List of Experiments		
	 Determination of viscosity coefficient of a given liquid using Ostwald"s Viscometer (Density of the given liquid to be given) 	3	

4	Phase rule and Water Technology				
	Phase rule: Statement of Gibb's phase rule and explanation of the terms involved, phase diagram of one component system-water system, condensed phase rule, phase diagram of two component system-eutectic, Pb-Ag system, application-desilverization of lead.	9			
	Water Technology: Boiler feed water, Boiler troubles with disadvantages – Scale and sludge formation, Priming and foaming, Boiler corrosion – Dissolved oxygen, Carbon dioxide and MgCl ₂ and prevention. Determination of COD-Numerical problems on COD. Softening of water by ion exchange process, desalination of sea water by electro dialysis. Sewage treatment: Activated sludge process.		 co2, co5&co6		
	List of Experiments		C02,		
	 Determination of total hardness of water sample by preparing std.EDTA solution Determination of chemical oxygen demand (COD) of the given industrial wast sample Determination of total alkalinity of a given sample of water using standard Hydrochloric acid. Condctometric estimation of HCl and CH₃COOH mixture using std.NaOH Estimation of sodium by flame photometry 				
5	Polymers and Nanoscience Polymers- Introduction, types of polymerization- addition and condensation. Free radical mechanism taking vinyl chloride as an example-Glass transition temperature, Factors influencing Tg-Flexibility, intermolecular forces, molecular mass, branching, cross linking, significance of Tg. Synthesis, properties and applications of PMMA, Teflon, Polymer composites –Introduction, synthesis, properties and applications of Kevlar fibre.	9	C01&C02		
	Nanoscience: Introduction, properties at nano scale (size dependant), synthesis-bottom up approach, precipitation technique, applications of nanomaterials - fullerenes, carbon nanotubes, nanowires, nanorods and biomedicals (nanomedicine)				

Text Books

- 1. Chemistry for Engineering Students, B. S. Jaiprakash, R. Venugopal, Shivakumaraiah and PushpaIyengar, 2015 Edition, SubhashPublications, Bangalore
- 2. Engineering Chemistry by R. V. Gadag and A. NityanandaShetty, , 3rd Edition, 2014 I K International Publishing House Pvt. Ltd., New Delhi.
- 3. A Text Book of Engineering Chemistry, Jain and Jain, 3rd Edition, 2014 Dhanpatrai Publications

Reference Books

- 1. Engineering Chemistry by O. G. Palanna, Tata McGraw Hill Education Pvt. Ltd.
- 2. Engineering Chemistry by V R Kulkarni and K.Ramakrishna Reddy, 1st Edition, 2016, New Age International Publishers.
- 3. Corrosion Engineering by M. G. Fontana, Tata McGraw Hill Education Pvt. Ltd. New Delhi.
- 4. Wiley Engineering Chemistry, Wiley India Nanochemistry A Chemical Approach to Nanomaterials by G. A. Ozin and A. C. Arsenault.

Assessment Pattern

Bloom"s Category	Tests	Assignments	Quizzes	SSA
Marks (out of 50)	30	5	5	10
Remember	5	-	1	
Understand	15	2	1	3
Apply	5	2	2	3
Analyze	5	1	2	4
Evaluate				
Create				

CIE- Continuous Internal Evaluation (50 Marks) (Theory)

CIE- Continuous Internal Evaluation (25 Marks) (lab)

Bloom"s Category	Performance (day to day)	Internal test
Marks (out of 25)	15	10
Remember	02	02
Understand	03	03
Apply	05	03
Analyze	05	02
Evaluate		
Create		

SEE- Semester End Examination Theory (50 Marks)

Bloom "s Category	SEE Theory
	(50)
Remember	10
Understand	20
Apply	10
Analyze	10
Evaluate	
Create	

SEE- Semester End Examination Lab (25 Marks)

Bloom"s Category	SEE Lab
	(25)
Remember	5
Understand	10
Apply	5
Analyze	5
Evaluate	
Create	

INTRODUCTION TO PROGRAMMING WITH "C"

Course Code : 15CSE13/23 L:P:T:S : 3:1:0:1 Exam Hours : 03

Credits: 05 CIE Marks : 50+25 SEE Marks : 50+25

Course Outcomes: Students shall demonstrate knowledge associated with:

C01	Apply the fundamentals of problem-solving skills to solve real time problems.
CO2	Apply the basic concepts of branching, looping statements of C Language in problem solving.
CO3	Design and evaluate C programs based on different data types, decision structures, loops, arrays, strings and functions.
C04	Analyze the given application and choose appropriate structures, files, pointers and preprocessors
C05	Analyze the various searching and sorting algorithms.
C06	Categorize various data structures and their applications.

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C01	3	-	-	-	-	-	-	-	-	1	-	1	-	-
CO2	3	-	-	-	3	-	-	-	3	-	-	-	3	3
CO3	3	3	3	-	3	-	-	-	3	-	-	-	3	3
CO4	3	3	3	-	3	-	-	-	3	-	-	-	3	3
C05	3	3	3	1	3	-	-	-	3	1	-	-	3	3
C06	3	3	-	-	-	-	-	-	-	1	-	1	3	3

	SYLLABUS		
Module	Contents of the Module	Hours	COs
1	Introduction to C Language: Pseudocode solution to problem, Basic concepts of a C program, Declaration, Assignment & Print statement, Types of operators and expressions, Programming examples and exercise.	6	CO1 CO2
2	Branching and Looping: Twoway selection(if,if-else,nestedif-else, cascadedif- else),switchstatement,ternary operator?Goto,Loops(For,do-while, while)inC,breakandcontinue,programmingexamplesandexercises.	8	
	 List of Experiments Design and develop a flowchart or an algorithm that takes three coefficients (<i>a</i>, <i>b</i>, and <i>c</i>) of a Quadratic equation (<i>ax</i>2+<i>bx</i>+<i>c</i>=0) as input and compute all possible roots. Implement a C program for the developed flowchart/algorithm and execute the same to output the possible roots for a given set of coefficients with appropriate messages. Design and develop an algorithm to find the <i>reverse</i> of an integer number NUM and check whether it is PALINDROME or NOT. Implement a C program for the developed algorithm that takes an integer number as input and output the reverse of the same with suitable messages. Ex: Num: 2014, Reverse: 4102, Not a Palindrome a Design and develop a c program to implement simple calculator using switch case statement. b. Design and develop a C program to read a <i>year</i> as an input and find whether it is <i>leap year</i> or not. Also consider end of the centuries. 4. Draw the flowchart and Write a C Program to compute Sin(x) using Taylor series approximation given by Sin(x) = x - (x3/3!) + (x5/5!) - (x7/7!) + 	6	CO2 CO3
3	 Arrays and Strings: Using anarray, UsingarrayswithFunctions, Multi- Dimensional arrays. String: Declaring, Initializing, Printing and reading strings, strings manipulation functions, strings input and output functions, arrays of strings, programming examples and Exercises. Functions: Functions in C, Argument Passing–call by value, Function and program structure, location of functions, void and parameter less Functions, Recursion, programming examples and exercises. 	12	CO2 CO3
	 List of related Experiments 5.a. Develop an algorithm, implement and execute a C program that reads N integer numbers and arrange them in ascending order using <i>Bubble Sort</i>. b. Develop, implement and execute a C program to search a Name in a list of name using <i>Linear searching</i> Technique. 	6	4 CO5

5 Pointers	and Preprocessors: Pointers and address, pointers and functions	10	CO
structures appropria	a C program to maintain a record of \mathbf{n} student details using an array of with four fields (Roll number, Name, Marks, and Grade). Assume te data type for each field. Print the marks of the student, given the ame as input.		
Name 2	USN2	15	
Name 1	USN1		CO
Student N			CC
-	e "output.txt" on to the screen.		
	into output file in the sequence shown below. Display the contents of		
	d " output.txt " and copy the content of files "studentname.txt" and		
	students Name and USN respectively. Write a C program to create a new		
	xperiments two university information files " studentname.txt " and " usn.txt " that		
	g offiles,Inputandoutputoperations,programmingexamplesandexercises		-
	Arraysofstructures, structureDatatypes, typedefinition, Defining, opening	8	
	es and File Management: Basicofstructures, structures and	-	
	the results for different values of n and r with suitable messages.		
	tion, write a C program to compute the binomial coefficient r nC .		
number, <i>i</i>	n! , defined by $fact(n)=1$, if $n=0$. Otherwise $fact(n) = n*fact(n-1)$. Using		
b. Draw t	he flowchart and write a <i>recursive</i> C function to find the factorial of a		
with diffe			
	he integers are unsigned. Write a C program that invokes this function		
-	nput and returns value of the integer x rotated to the right by n positions.		
8 a Desig	gn and develop a C function RightShift (x, n) that takes two integers x		
b. Read a	sentence and print frequency of vowels and total count of consonants.		
library fu			
	e and execute a C program that Implements string copy operation $Y(str1, str2)$ that copies a string <i>str1</i> to another string <i>str2</i> without using		
incompati	ibility.		
	for multiplication. Report appropriate message in case of		
-	rix format only. Program must check the compatibility of orders of the		
	matrices and resultant matrix with suitable headings and output should		
	in row major order and in column major order respectively. Print both		
	p, implement and execute a C program that reads two matrices A (m x n p x q) and Compute product of matrices A and B . Read matrix A and		

arguments, pointers and arrays, address arithmetic, character pointer and		CO6
functions, pointerstopointer, Initialization of		
pointersarrays, Dynamical locations methods, Introduction to		
Preprocessors, Complier control Directives, programming examples and exercises.		
IntroductiontoDataStructures:Primitiveandnonprimitivedatatypes,Definitionand		
applications of Stacks, Queues, Linked Lists and Trees		
List of Experiments	3	
11. Write a C program using pointers to compute the sum, mean and standard		
deviation of all elements stored in an array of n real numbers.		

TEXT BOOKS:

- 1. BrainW.Kernighan and Dennis M.Richie: The C programming Language, 2nd Edition,PHI, 2012.
- 2. Jacqueline Jones& Keith Harrow: Problem Solving with C, 1stEdition, Pearson 2011.

REFERENCEBOOKS:

- 1. Vikas Gupta: Computer Concepts and C Programming, Dreamtech Press2013.
- 2. RSBichkar, Programming with C, University Press, 2012.
- 3. V Rajaraman :Computer Programming in C, PHI, 2013

SELF STUDY: Students shall study the evolution of various programming languages from 1970s till date and thereby understand the fundamental difference in features among various programming languages.

CIE- Continuous Internal Evaluation (50 Marks, theory)										
Bloom"s Category	Tests	Assignments	Quizzes	Self Study						
Marks (out of 50)	30	5	5	10						
Remember	-	-	-							
Understand	5	2	2.5	5						
Apply	5	2	-							
Analyze	10	1	2.5	5						
Evaluate	5	-	-							
Create	5	-	-							

Assessment Method: CIE- Continuous Internal Evaluation (50 Marks,theory)

CIE- Continuous Internal Evaluation for lab (25 Marks)

Bloom"s Category	Tests	Assignments	Quizzes/Viva
Marks (out of 25)	10	10	05

Remember	-	-	-
Understand	-	5	01
Apply	-	2	01
Analyze	5	3	01
Evaluate	-	-	-
Create	5	-	01

SEE – Semester End Examination (50 Marks - Theory)

Bloom"s Category	Tests(theory)
Remember	-
Understand	10
Apply	10
Analyze	10
Evaluate	-
Create	20

SEE – Semester End Examination (25 Marks - Lab)

Bloom"s Category	Tests(theory)
Remember	-
Understand	-
Apply	5
Analyze	10
Evaluate	-
Create	10

COMPUTER AIDED ENGINEERING DRAWING

Course Code : 15MEE14/24 L:P:T:S : 2:1:1:0 Exam Hours : 03

Credits: 04CIEMarks: 50SEE Marks: 50

COURSE OUTCOMES: At the end of the course, the students will be able to:

C01	Apply the knowledge of engineering fundamentals in order to understand about Dimensioning, conventions and standards related to working drawings and understand the theory of orthographic projections in order to communicate effectively with engineering community.
CO2	Analyze the data in Organizing, demonstrating and arranging solids and planes in different positions using Modern tool usage with this contextual knowledge, complex problems can be solved.
CO3	Improved visualization skills which can lead to the development of sketch into orthographic views further helps in modelling of complex engineering problems.
CO4	By interpreting the given data, design or develop the 3D models in isometric view with the help of modern Engineering software tools.
CO5	Engage in independent study as a member of a team and make an effective oral presentation or demonstration on topics related to the practical application and complex engineering problems using advanced mechanical systems or software.
C06	Understanding physical dimensions or specifications prior to executing complex engineering problems.

	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	P010	P011	P012
C01	2	-	-	-	-	-	-	-	-	2	-	-
C02	2	-	2	-	1	-	-	-	-	-	-	-
CO3	-	-	-	-	1	-	-	-	-	-	-	-
C04	-	-	-	2	1	-	-	-	-	-	-	-
C05	-	-	-	2	-	-	-	-	-	-	-	2
C06	-	-	2	-	-	-	-	-	-	-	-	-

Module No	Contents of Module	Hrs	Cos
1	INTRODUCTION: Introduction to Computer Aided Sketching: Introduction, Drawing instruments and their uses, BIS Conventions, Lettering, Dimensioning, geometrical constructions and freehand practicing. Introduction to software, commands used for engineering drawing PROJECTION OF POINTS: Introduction, Definitions - Planes of projection, reference line and conventions employed, Projections of points in all the four quadrants, Projections of straight lines (located in First quadrant/first angle only)	10	CO1
2	PROJECTION OF STRAIGHT LINES True and apparent lengths, True and apparent inclinations to reference planes (No application problems	10	CO1, CO2
3	PROJECTION OF PLANE SURFACES Introduction, Definitions-projections of plane surfaces-triangle, square, rectangle, rhombus, pentagon, hexagon and circle, planes in different positions by change of position method only (No problems on punched plates and composite plates)	10	CO1, CO3, CO6
4	PROJECTIONS OF SOLIDS Introduction, Definitions – Projections of right regular tetrahedron, hexahedron (cube), prisms, pyramids, cylinders and cones in different positions (No problems on octahedrons and combination solid).	20	CO4, CO6
5	ISOMETRIC PROJECTIONS (USING ISOMETRIC SCALE ONLY) Introduction, Isometric scale, Isometric projection of simple plane figures, Isometric projection of tetrahedron, hexahedron(cube), right regular prisms, pyramids, cylinders, cones, spheres, cut spheres and combination of solids (Maximum of three solids).	16	CO5, CO6 CO6

TEXT BOOKS:

1. Engineering Drawing - N.D. Bhatt & V.M. Panchal, 48th edition, 2005-Charotar Publishing House, Gujarat

2. Computer Aided Engineering Drawing - K. R. Gopalakrishna, Subash Publishers, Bangalore, 2015, ISBN-13: 9789383214204

REFERENCE BOOKS:

1. A Primer on Com puter aided Engineering drawing – 2006, published by VTU, Belgaum.

2. Fundamentals of Engineering drawing with an Introduction to Interactive Computer Graphics for Design and Production" – Luzadder Warren J., Duff John M., Eastern Economy Edition, 2005 – Prentice– Hall of India Pvt. Ltd., New Delhi.

Assessment Pattern

CIE: Continuous Internal Evaluation (50 Marks)

Bloom"s Category	Tests	Assignments	Surprise
Marks (out of 50)	30	10	10
Remember	2	1	1
Understand	6	2	2
Apply	7	2	2
Analyze	7	2	2
Evaluate	2	1	1
Create	6	2	2

SEE: Semester End Examination (50 Marks)

Bloom"s Category	Tests
Remember	4
Understand	10
Apply	11
Analyze	11
Evaluate	4
Create	10

BASIC ELECTRONICS

Course Code : 15ECE15/25	Credits	:04
L:P:T:S : 3:0:1:0	CIE Marks	: 50
Exam Hours: 03	SEE Marks	: 50

Course Outcomes: At the end of the Course, the Student will be able to:

C01	Use Boolean algebra concepts to implement combinational and sequential circuits
CO2	Identify the diode's usage as rectifier, and Zener diode's usage as voltage regulator
CO3	Understand the basic characteristics of BJT and MOSFET
CO4	Analyze the working of BJT Amplifier circuits
C05	Illustrate the various applications of op-amp
C06	Describe the architecture of Microprocessors and Microcontrollers

Mapping of Course Outcomes to Graduate Attributes:

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	3	2	2	-	-	-	-	-	-	-	-	-
C02	3	-	-	-	-	-	-	-	-	-	-	-
C03	3	-	-	-	-	-	-	-	-	-	-	-
C04	3	2	2	-	-	-	-	-	-	-	-	-
C05	3	-	-	-	-	-	-	-	-	-	-	-
C06	3	-	-	-	-	-	-	-	-	-	-	-

	SYLLABUS		
Sl	Contents of Module	Hrs	COs
no			
1	Digital Electronics: Switching and Logic Levels, Digital	9	CO1
	Waveforms, Number Systems (Decimal, Binary, Hexadecimal,		
	Octal), Conversion from one number system to other,		
	Complement of Binary Numbers, Boolean Algebra Theorems,		
	De Morgan"s theorem, Logic gates, Digital Circuits, Algebraic		

	Simplification, NAND and NOR Implementation, Half Adder, Full Adder, Encoder, Decoder, Latch, Flip-Flop, Registers.		
2	 Semiconductor Diodes and Applications: P-N Junction diode – its principle, characteristics and parameters, Applications (Half-Wave Rectifier, Two-Diode Full Wave Rectifier, Bridge Rectifier), Types of diodes (Zener diode, LED, Photo diode), Zener diode as voltage regulator. Bipolar Junction Transistor: BJT Operation, BJT Voltages and Currents, Common Emitter Characteristics, Numerical examples as applicable. 	9	CO2, CO3
3	 BJT Biasing: DC load line, Need for biasing, Voltage divider bias, Numerical examples as applicable. Amplifiers: BJT amplification – BJT as a voltage and current amplifier, voltage gain, current gain, single stage CE amplifier, phase reversal, effect of coupling and bypass capacitors. MOSFET: Introduction to MOSFET Theory, operation and characteristics. Filters: Introduction, Low pass, high pass, band pass and band 	9	CO4
4	 stop filters. Operational Amplifier & its Applications: Characteristics (Ideal Op-amp, Practical Op-amp), Inverting and Non- inverting Amplifier, Voltage follower, Summing Amplifier and Subtractor, Numerical examples as applicable. Oscillators: Basic feedback theory, Positive and Negative feedback, Concept of Stability, Introduction to Oscillators, Crystal oscillator. 	9	C05
5	 Communication System: Principles of Communication System, Need for Modulation, AM and FM Modulation concept. Microprocessors and Microcontrollers: Introduction to Microprocessors, General operation of Microprocessors, 8085 	9	CO6
	Microprocessors, General operation of Microprocessors, soos Microprocessor architecture and working principle, Introduction to assembly language programming, Introduction to Microcontrollers, 8051 Microcontroller architecture and operation, Comparison between Microprocessors and Microcontrollers.		

Case study:

Mandatory case study on an Electronic system specifying its block diagram and operation to be submitted as an assignment.

Text Books:

- 1. Electronic Devices and Circuits, David. A. Bell, 5th Edition, 2008, Oxford University Press.
- 2. Digital Logic and Computer Design, M. Morris Mano, 5th edition, 2002, PHI.

Reference Books:

- 1. Op-amps and linear integrated circuits, Ramakant A. Gayakwad, 4th edition, 2000, Prentice Hall.
- 2. Electronic communication systems, Wayne Tomasi, 5th edition, 2001, Pearson education.
- 3. Electronic Principles, Albert Malvino and David Bates, 8th edition, 2015, McGraw-Hill.
- 4. Electronic Devices and Circuit Theory, Robert L. Boylestad and Louis Nashelsky, 10th Edition, 2008, Pearson Education / PHI.
- 5. Microprocessor Architecture, Programming and Applications with 8085, Ramesh Gaonkar, 6th Edition, 2013, Prentice Hall.
- The 8051 Microcontroller and Embedded Systems using Assembly and C, Muhammad Ali Mazidi, 2nd Edition, 2011, Pearson.

Assessment Pattern

CIE- Continuous Internal Evaluation (50 Marks)

Bloom"s Category	Tests	Assignments	Quizzes
Marks (out of 50)	30	10	10
Remember	10		
Understand	10	5	
Apply	10	5	5
Analyze			5
Evaluate			
Create			

Note: Any particular electronic system can be considered as case-study for a team of students, and the teams are required to present the system's basic working principles to the class. This work can be considered as one of the assignments, which can be evaluated for 5 marks.

SEE- Semester End Examination (50 Marks)

Bloom "s Category	Tests
Remember	20
Understand	15
Apply	10
Analyze	5
Evaluate	
Create	

ENVIRONMENTAL SCIENCE AND AWARENESS

Course Code : 16HSS161	Credits	:02
L:P:T:S : 2:0:0:0	CIE Marks	: 50
Exam Hours : 02 Hours	SEE Marks	: 50

Course Outcomes: At the end of the Course, the student will be able to:

C01	Understand the concepts of environment, ecology, ecosystem and impact of human activities
CO2	Gain knowledge on natural resources and concept of sustainable development
CO3	Understand the causes, effects and control measures of pollution and also its impacts on agriculture, housing and transportation
CO4	Deduce various environmental issues
C05	Understand the basic concepts of energy resources
C06	Understand significance of environmental acts, amendments, ethics and role of Government

	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C01	3	-	-	-	-	-	3	-	-	-	-	-	-	-
C02	3	-	-	-	-	-	3	-	-	-	-	-	-	-
CO3	3	2	-	2	-	-	3	-	-	-	-	-	-	-
CO4	3	2	-	2	-	-	3	-	-	-	-	-	-	
C05	3	-	-	-	-	-	3	-	-	-	-	-	-	-
C06	3	-	-	-	-	-	3	1	-	-	-	-	-	-

Module	Content of Module	Hrs	COs
No			
	Introduction to Environment and Ecology		CO1
	Environment - Components of Environment, Scope and importance of		
1	Environmental studies, Ecology &Ecosystem: Types & Structure of	05	
	Ecosystem, balanced ecosystem.		
	Natural Resources		CO2
2	Water resources - Availability & Quality aspects, conflicts over water,	04	
	Water borne diseases; Mineral resources, Forest resources		
	Concept of sustainable development		
	Environmental Pollution and Human activities and impacts	-	CO1,
			CO3
3	Definition, Causes, effects and control measures of Air Pollution, Water	04	&
	Pollution, Land Pollution and Noise pollution.		
			CO4
	Effects and impacts on agriculture, housing and transportation		
	Energy resources	-	
4	Basic concepts of energy resources, creating awareness about energy resources, Solar energy, Hydro electric energy, Wind Energy, Nuclear	04	CO5
	energy, Biomass & Biogas, Fossil Fuels, Hydrogen as an alternative		005
	energy source.		
	Environmental Acts and Central Government Projects		
	Zavironnenturrets und Sentral Soverinnent Höjeets	-	
5	Environmental Acts and amendments, environmental ethics, awareness		CO4&
	about environmental protection, Role of government: Swatch Bharat	05	CO6
	Abhiyan, National Mission for Clean Ganga (NMCG), River		
	rejuvenation, Role of Nongovernmental Organizations (NGOs),Global		
	warming and climate change.		
		I	1

Text Books:

- 1. Environmental Studies by Dr. R. Geetha Balakrishnan, S.M. Publication, Bangalore, 2007 Edition.
- 2. Environmental Studies From Crisis to Cure by R Rajagopalan, Oxford University Press, 2011 Edition (ISBN-9780198072089).

Reference Books:

1. Ecology, Environment& Pollution by Dr. A. Balasubramanian, Indira Publishers, Mysore.

2. Environmental Science and Engineering by P. Venugopala, Prentice Hall of India Pvt. Ltd, New Delhi, 2012 Edition (ISBN- 978-81-203-2893-8).

3. Environmental Science- Working with the earth by G Taylor Miller Jr, Brooks Cole Thompson Publications, 10 thEdition (ISBN-10: 0534424082).

4. Elements of Environmental Science and Engineering by P. Meenakshi, Prentice Hall of India Pvt. Ltd, 2005 Edition (ISBN- 8120327748, 9788120327740).

CIE- Continuous Internal Evaluation (50 Marks)

Bloom"s Category	Tests	Assignments	Presentation
Marks (out of 50)	20	15	15
Remember	05	5	5
Understand	10	10	5
Apply	05	0	5
Analyze	0	0	0
Evaluate	0	0	0
Create	0	0	0

SEE – Semester End Examination (50 Marks)

Bloom"s Category	Tests
Remember	20
Understand	25
Apply	5
Analyze	0
Evaluate	0
Create	0

Percentage Evaluation of Various Bloom"s levels

Bloom"s Category	CIE	SEE	TOTAL	%
Remember	15	20	35	35
Understand	25	25	50	50
Apply	10	05	15	15
Analyze	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0
TOTAL	50	50	100	100

ESSENTIAL ENGLISH (Mandatory Course)

Course Code : 15HSS171/271	Credits	0
L:P:T:S : 2:0:0:0	CIEMarks	25
Exam Hours : 02	SEE Marks	50

Course Outcomes: At the end of the Course, the Student will be able to:

C01	Demonstrate command of the conventions of standard English grammar and usage when writing and speaking
CO2	Demonstrate command of the conventions of standard English capitalization, punctuation and spelling when writing
CO3	Use of language and its conventions when writing and speaking
C04	To construct present, past and future verb forms
C05	To make use of comparatives and superlatives
C06	Write essays and creative writings considered appropriate for the college level in a variety of rhetorical modes.

Mapping of Course Outcomes to Program Outcomes:

	P01	PO2	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012
C01	-	-	-	-	-	-	-	2	-	3	-	-
CO2	-	-	-	-	-	-	-	2	-	3	-	-
CO3	-	-	-	-	-	-	-	2	-	3	-	-
CO4	-	-	-	-	-	-	-	2	-	3	-	-
C05	-	-	-	-	-	-	-	2	-	3	-	-
C06	-	-	-	-	-	-	-	2	-	3	-	-

	SYLLABUS		
Module	Contents of the Module	Hours	COs
1	Introduction to English Grammar ,Importance of Grammar Parts of Speech, Usage of preposition, Articles, Punctuation	5	CO1, CO2 CO5
2	Tenses and Degrees of Comparison, Active and Passive Voice, Vocabulary Building	5	CO4
3	Idioms and Phrases, Direct and Indirect Speech, Vocabulary usage, Homonyms, Homophones, Spelling, One word substitute	4	CO2
4	Subject verb agreement, Common errors in English Collocations	4	CO2, CO4
5	Essay Writing, Creative Writing	4	CO3, CO6

Text Book:

1. Grammar Practice Activities- Penny Ur, Cambridge University Press

2. Grammar Builder Level 1 to Level 5 Paperback – Import, 10 Mar 2005 byAdibah Amin (Author), Rosemary Eravelly (Author), Farida J Ibrahim(Author), Cambridge University

Press Reference Books:

1. Wren, P.C.; Martin, H.; PrasadaRao, N.D.V. (1973–2010). High School English Grammar & Composition. New Delhi: S. Chand. ISBN 81-219- 2197-X.

2. Wren, P.C.; Martin, H., A Final Course of Grammar & Composition, S Chand.

Assessment Method:

CIE- Continuous Internal Evaluation (25 Marks)

Bloom "s Category	Tests
Marks (out of 25)	25
Remember	15
Understand	05
Apply	05
Analyze	
Evaluate	
Create	

SEE- Semester End Examination (50 Marks)

Bloom "s Category	Tests
Remember	30
Understand	10
Apply	10
Analyze	
Evaluate	
Create	

PHYSICS CYCLE

ENGINEERING MATHEMATICS-II

Course Code : 15MAT21 L:P:T:S : 4:0:1:0 Exam Hours : 03 Credits05CIE Marks50SEE Marks50

Course Outcomes: At the end of the Course, the Student will be able to do the following:

C01	Understand higher order linear differential equations to physical problems
CO2	Articulate the real world situations by partial differential equations
CO3	Acquire the concepts of multiple integrals over regions and special functions
C04	Cognize the basic concepts of Laplace transform to apply real world problems
C05	Solve initial and boundary value problems using Laplace transform method
C06	Able to find response of the system using Laplace transform

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	3	3	3	3	3	-	-	-	-	3	-	3
C02	3	3	3	3	3	-	-	-	-	3	-	-
CO3	3	3	3	3	3	-	-	-	-	-	-	-
C04	3	3	3	3	3	-	-	-	-	3	-	3
C05	3	3	3	3	3	-	-	-	1	-	-	-
C06	3	3	3	3	3	-	-	-	1	-	-	-

	Syllabus		
Module	Contents of the Module	Hour	COs
1	Linear differential equations of second and higher order: Solutions of second and higher order differential equations, solutions of simultaneous differential equations of first order. Solution of Cauchy"s and Legendre"s linear differential equations and variation of parameters method	9	CO1
2	 Partial Differential equations: Formation of PDE by eliminating arbitrar constants and functions, Solution of non-homogeneous PDE by direct integration, and homogeneous PDE involving derivative with respect to o independent variable only. Solution of homogeneous linear P.D.E with constant coefficients. Applications:- Stretched string, heat flow. Derivation of one dimensional heat and wave equations and Solutions of heat, Laplace and wave equations by variable separable method. 	9	CO2

3	Integral Calculus: Double and triple integrals, evaluation of double		
	integrals by changing the order of integration and changing into polar		
	coordinates. Beta and Gamma functions, definitions, Relation between bet		CO3
	and gamma functions and simple problems.	9	0.00
	Application: Application of double and triple integrals to find area,		
	volume and volume of revolution.		
4	Laplace Transform :Definition and Laplace transforms of elementary		
	functions. Properties of Laplace transforms (without proof), periodic	0	CO4,
	functions, unit-step function and Impulse function – problems. Inverse	9	CO5
	Laplace Transform - problems, initial and final value theorem.		
5	Applications of Laplace Transform : Convolution theorem, solution of	9	CO5,
	linear differential equations and LCR Circuit. Matrix exponential, finding		CO6
	matrix exponential for second order homogeneous and non-homogeneous		
	system by Laplace transform method & spectral form of second order		
	system.		

Text Books:

1. Advanced Engineering Mathematics, Erwin Kreyszig, 10th edition,2014, Wiley-India publishers.

2. Higher Engineering Mathematics, B.S.Grewal, 43nd edition, 2014, Khanna Publishers.

Reference Books:

1. Advanced Modern Engineering Mathematics, Glyn James, 4th edition, 2015, Pearson Education.

2. Advanced Engineering Mathematics, Dennis G. Zill, Michael R. Cullen, 4th edition, 2015, Jones and Barlett Publishers Inc.

3.Engineering Mathematics, B. V. Ramana, 4th edition, 2005, Tata McGraw Hill Publications.

4. Engineering Mathematics, Anthony Craft, 4th edition, 2013, Pearson Education.

Assessment Pattern

CHL- Continuous Internal Evaluation (50 Marks)						
Bloom "s Category	Tests	Assignments	Quizzes			
	(30 Marks	(10 Marks)	(10 Marks)			
Remember	10	3	5			
Understand	5	5	5			
Apply	5	2	-			
Analyze	5	-	-			
Evaluate	5	-	-			
Create	-	-	-			

CIE- Continuous Internal Evaluation (50 Marks)

SEE- Semester End Examination (50 Marks)

Bloom"s Category	Questions (50 Marks)
Remember	10
Understand	10
Apply	20
Analyze	5
Evaluate	5
Create	

Course Code : 15PHY12/22 L:P:T:S : 3:1:0:1 Exam Hours : 03 Credits 05 CIE Marks : 50+25 SEE Marks : 50+25

Course Outcomes: At the end of the Course, the Student will be able to:

C01	Gather knowledge about modern scientific phenomena
CO2	Acquire the ability to analyze the engineering concepts based on fundamental physical concepts.
CO3	Possess the ability to analyze, formulate and solve problems
CO4	Apply the laws of physics for better understanding of materials and their properties for various applications.
C05	Understand the Structure - Property relationship in the domain of material science and underlying its importance in field of Nanotechnology
C06	Utilize the scientific method and demonstrate competency with experimental methods to verify concepts related to content knowledge.

	P01	P02	P03	P04	PO5	P06	P07	P08	P09	P010	P011	P012
C01	3	2	-	-	-	-	-	-	2	-	-	1
C02	3	2	-	-	-	-	-	-	2	-	-	1
C03	3	2	-	-	-	-	-	-	2	-	-	1
C04	3	2	-	-	-	-	-	-	2	-	-	1
C05	3	2	2	-	-	-	-	-	2	-	-	1
C06	3	2	2	-	-	-	-	-	2	-	-	1

Module	Contents of the Module	Hours	COs
1	Lasers:		
	Introduction, Basic concepts (absorption, spontaneous emission and Stimulated emission) Einstein coefficients and their relations, Population inversion, Lasing action, - Characteristics of Lasers Working principle, components, construction and working of CO2 laser.	9	C01,
	Fiber Optics:		CO2,
	Introduction, Basic structure of optical fiber, Principle of optical fiber - Acceptance angle, acceptance cone and Numerical aperture - Types of optical fibers (Material, Refractive index and Mode guiding) - V-number, Attenuation ,Point to point communication of optical fibers, problems.		CO3, CO6
	List of Experiments 1. Laser Diffraction : To determine the wavelength of Laser using grating	3	
2	Magnetic Properties:		
	 Origin of magnetic moment - Classification of Magnetic materials (dia, para, ferro) - Ferromagnetic – Domain theory - B-H curve - Soft and hard magnetic materials - applications. Dielectric Properties: Dielectric constant - polarization –types, Polarizability - Internal field (Expression for One dimensional solid) Clausius -Mossotti equation(Derivation) – Temperature and frequency dependence of Polarizability, Dielectric loss - 	9	CO1 CO2 CO3 CO4
	Piezoelectrics, ferroelctrics -problems.		CO6
	 List of Experiments 2. B - H Curve: To draw the B – H curve and to determine the coercivity and retentively of the given ferro magnetic materia 3. Dielectric constant: To determine the dielectric constant of given dielectric by charge and discharge method 	6	
3	Modern Physics : Introduction, dual nature of light, dual nature of matter, de-Brogile hypothesis, matter waves and their characteristic properties , Phase velocity, Group velocity (concept and derivation), Qualitative discussion of interrelationship between phase velocity and group velocity, relation between group velocity and particle velocity, expression for de-Broglie wavelength in terms of Group Velocity. Problems Quantum Mechanics:	9	CO1 CO2 CO3 CO6
	Heisenberg"s uncertainty principle – definition, application and significance, derivation of Schrodinger Time Independent wave		

	 equation in 1 dimension – Eigen values and Eigen functions, Physica significance of wave function - Particle in a box (one dimensional), problems List of related Experiments 4. Determination of Planck 's constant using LED 5. Stefan's Law: To verify Stefan's Law 	6	
4	Conductors: Qualitative discussion of Classical free electron theory – concept of drift velocity, relaxation time-expression for electrical conductivity (no derivation) – mobility- drawbacks- Quantum free electron theory – Fermi- factor and its dependence on Energy at various temperatures – success of quantum free electron theory. Problems. Semiconductor Physics: Introduction, conductivity in an intrinsic semiconductor-carrier concentration (only expression – no derivation) , Law of mass action and expression for position of Fermi level in Intrinsic semiconductors(derivation) –Hall Effect, Hall coefficient (derivation) –applications .	9	C01 C03
	 List of Experiments 6. Fermi Energy: To determine the Fermi energy of copper. 7. Photodiode Characteristics: To study the V-I characteristics o photo diode for different light intensity in reverse bias condition 8. Zener Diode Characteristics: To study the V-I characteristics of Zener diode and the reverse Zener break down voltage 9. Transistor Characteristics: To study the input and output characteristics of a Transistor in CE cofiguration and find the gain factor. 10. Energy Gap: To find the energy gap of a given thermistor. 11. Frequency Response of LCR circuit – Series & parallel 	18	CO4 CO6
5	Crystal structure: Review, Unit cell, Bravais lattice, Seven crystal systems, Miller indices, Interplanar distance-derivation(for a cubic system), structure of NaCl, Braggs law, Braggs X-ray spectrometer, Problems NanoScience: Introduction, Density of states in 0d, 1d,2d and 3d system ,Moore''s law, synthesis: Top-down, Bottom – Up (Sol – Gel), , Carbon nano tubes- synthesis, properties and applications, SEM.	9	CO1 CO3 CO4 CO5 CO6
	List of Experiments 12. Determination of lattice parameters using Powder Diffraction pattern.	3	

Self Study:

Student shall be given topics based on which they can create working model, lab view demonstration, charts, power point presentations. The topics shall be an extended part of the syllabus.

Text Book

1. Engineering Physics, S.P.Basavaraju, 2016 Edition, 2015, Subhas Stores

2.A Textbook of Engineering Physics, Gaur and Gupta, 8 $^{\rm th}$ Edition, 2011, DhanpatRai Publishers

Reference Books

1.Engineering Physics, B. K. Pandey and S. Chaturvedi,1st edition, 2012, Cengage Publication

2. Solid State Physics, C Kittel, 8th Edition, 2012, Wiley International

3. Concepts of Modern Physics, Arthur Beiser, 6th Edition, 2009, Tata McGraw Hill,

4.A Textbook of Solid State Physics, S.O. Pillai, 6th Edition, 2010, New Age International,

Assessment Pattern

CIE- Continuous Internal Evaluation Theory (50 Marks)

Bloom"s Category	Tests	Assignments	Quizzes	Self Study
Marks (out of 50)	30	05	05	10
Remember	10		02	
Understand	10		02	
Apply	10	03	01	03
Analyze		02		03
Evaluate				
Create				04

CIE- Continuous Internal Evaluation Lab(25 Marks)

Bloom"s Category	Performance (day to day)	Internal test
Marks (out of 25)	15	10
Remember	02	02
Understand	03	03
Apply	05	03
Analyze	05	02
Evaluate		
Create		

SEE- Semester End Examination Theory (50 Marks)

Bloom"s Category	Marks Theory(50)
Remember	10
Understand	20
Apply	10
Analyze	10
Evaluate	
Create	

SEE- Semester End Examination Lab(25 Marks)

Bloom"s Category	Lab(25)
Remember	05
Understand	10
Apply	05
Analyze	03
Evaluate	02
Create	

ELEMENTS OF MECHANICAL ENGINEERING

 Course Code
 : 15MEE13/23

 L:P:T:S
 : 3:1:0:1

 Exam Hours
 : 03

Credits : 5 CIE Marks : 50+25 SEE Marks : 50+25

COURSE OUTCOMES: At the end of the course, the students will be able to:

C01	Apply the concepts of conventional and non-conventional energy systems to design and develop alternate source of energy production.
CO2	Analyze the different types of IC engines and refrigeration systems and solve problems related to them.
CO3	Apply appropriate manufacturing techniques for product development in consequent to the professional Engineering practice in Mechanical Engineering.
CO4	Apply the concepts of planes and projections and visualize the various ways to create the development of solid sheet metal Models with the aid of modern tools.
C05	Understand the impact of various systems, processes and solutions of mechanical engineering in societal and Environmental context.
CO6	Analyze the different Engineering materials for their respective application in various engineering fields and study about their Joining processes.

Mapping of Course outcomes to Program outcomes:

	P01	P02	PO3	P04	PO5	P06	PO7	P08	P09	PO10	P011	P012
C01	3	-	3	-	-	-	-	-	-	-	-	-
CO2	-	1	-	-	-	-	-	-	-	-	-	-
CO3	3	-	3	-	-	2	-	-	-	-	-	-
C04	3	-	3	-	3	-	-	-	-	3	-	-
C05	-	-	-	-	-	2	1	-	-	-	-	1
C06	3	1	3	-	-	-	-	-	-	-	-	-

Module No	Contents of Module	Hrs	Cos
1	 Energy and its Importance: Definition, classification based on long term availability, commercial applications, traditional use and Usability. Conventional energy sources and their conversion: formation of fossil fuels, Energy conversion from fossil fuels, Nuclear Energy: Nuclear fission, nuclear fusion and utilization of nuclear energy. Hydel energy: Hydroelectric power generation 	10	C01

	Non Conventional energy sources and their conversion		
	Solar energy: Introduction, Heliochemical, helioelectrical and heliothermal process, Wind Energy: Schematic diagram of windmill, advantages and disadvantages of wind energy. Geothermal Energy Conversion : Open cycle – working principle, closed cycle – working principle, advantages and disadvantages		
	 List of Experiments: 1. Introduction to development of lateral surfaces, types , section plane concepts 2. Development of regular pentagonal, square &hexagonal prism 	6	
2	Internal Combustion Engines : Classification, I.C. Engines parts and terminology, principle and operation of 2 Stroke and 4 stroke Petrol engines, 4 stroke diesel engines with P-V diagrams. Performance parameters: indicated power, brake power, friction power, indicated thermal efficiency, brake thermal efficiency, mechanical efficiency, specific fuel consumption, simple numerical problems.	10	
2	Refrigeration and Air-Conditioning : Refrigeration: Definitions- Refrigerating effect, Ton of Refrigeration, COP, Working principle of vapour compression refrigeration and vapour absorption refrigeration. Refrigerants: properties, list of commonly used refrigerants. Air conditioning: working principle of Room (window) air conditioner and applications		CO2, CO3
	 List of Experiments: 1. Development of right circular cone& frustum of cone 2. Development of pyramid& frustum of pyramid 	7	
3	Lathe and Drilling Machines: Lathe: Classification of lathe, Specification of lathe, Principle of working of a center lathe, major parts of a lathe, Lathe operations: cylindrical turning, facing, thread cutting, drilling, knurling. Taper turning: By swivelling of compound rest method and by tail stock offset method	8	CO3, CO4
	Drilling machine : Classification of drilling machines, Specification of radial drilling machine, Twist drill and its nomenclature, Bench drilling machine and radial drilling machine, drilling machine operations: drilling, boring, reaming, tapping, counter sinking and counter boring		

	 List of Experiments: 1. Development of cylinders and truncated cylinders 2. Model 1 & 2-Truncated and frustum of cone 	6		
4	 Milling machine: Classification of milling machine, principle of milling: Up milling and down milling operations, Horizontal and vertical milling machines. Milling operations: slab milling, end milling, slot milling. Grinding machine: Classification of grinding machine and operation of grinding machine, types of grinding machines: Surface, Cylindrical and Center less grinding machine. 	8	3 CO3, CO4	
	 List of Experiments: 1. Model 3 & 4-Truncated & frustum of pyramid 2. Model- 5& 6-Prism & funnel 	7		
5	 Engineering Materials: Properties of materials, types and applications of Ferrous & Nonferrous metals and alloys. Stress-strain curve for ductile and brittle materials, Hooke"s law, Simple problems on stress and strain Composite Materials: Introduction: definition, classification, different types of fabrication and applications. Joining Processes: Permanent Joints: Soldering, Brazing and Welding: Definitions, classification and method of soldering, Brazing and welding. Differences between soldering, brazing and Welding 	8	CO4, CO5, CO6	
	List of Experiments:1. Welding: Introduction, types of welding, Model 1,2,32. Brazing: Introduction and Model	7		

SELF STUDY

Latest Technological Developments in the field of Mechanical Engineering are to be given to the students in three separate batches with minimum of TWO reports to be submitted by each student

TEXT BOOKS:

- A Text Book of Mechanical Engineering , K R Gopalkrishna, 30th Edition, 2012, Subhas Publishers, Bangalore
- A Text Book of Elements of Mechanical Engineering S. Trymbaka Murthy, 3rd Revised Edition 2006, I.K. International Publishing House Pvt Ltd, New Delhi

REFERENCE BOOKS:

- 1. Elements of Mechanical Engineering, SKH Chowdhary, AKH Chowdhary & Nirjar
- 2. Roy, Media Promotors and Publishers, Mumbai
- **3.** Non Conventional Energy Resources, B H Khan ,Tata McGraw Hill publishing company Limited,2nd Edition 2006.
- **4. Computer Aided Engineering Drawing** K. R. Gopalakrishna, Subash Publishers, Bangalore.
- 5. Elements of Mechanical Engineering, Manglik V.K, PHI Publications, 2013
- 6. Basic Mechanical Engineering-Pravin Kumar, 2013 Edition, Pearson

Assessment Pattern

CIE: Continuous Internal Evaluation (50 Marks)

Bloom"s	Tests	Assignments	Quizzes	Self Study
Category				
Marks (out of 50)	30	05	05	10
Lab Marks (Out of 25)	10	10	05	
Remember	10	05	05	
Understand	15	05		
Apply	10	05	05	
Analyze	05			
Evaluate				
Create				10

CIE: Continuous Internal Evaluation for lab (25 Marks)

Bloom"s	Tests	Assignments	Viva
Category			
Marks (out of 25)	10	10	05
Remember	02	02	03
Understand	02	02	02
Apply	02	02	
Analyze	02	02	
Evaluate	02		
Create		02	

SEE: Semester End Examination (50 Marks)

Bloom"s Category	Theory (50
	Marks)
Remember	10
Understand	15
Apply	15
Analyze	05
Evaluate	05
Create	

SEE: Semester End Examination for lab(25Marks)

Bloom"s Category	Lab (25 Marks)
Remember	05
Understand	05
Apply	04
Analyze	03
Evaluate	03
Create	05

ELEMENTS OF CIVIL ENGINEERING

Course Code : 15CIV14/24	Credits	: 04
L:P:T:S : 3:0:1:0	CIE Marks	: 50
Exam Hours : 3 Hours	SEE Marks	: 50

Course Outcomes : At the end of the Course, the student will be able to:

C01	Apply the knowledge of science and engineering fundamentals to the solution of civil engineering problems and to comprehend with structures, materials and its components.
CO2	Analyze and compute the reactive forces and its effects using principles of mathematics and engineering sciences.
CO3	Formulate and apply the conditions of static equilibrium to solve the problems of civil engineering.
CO4	Apply the knowledge of science and engineering fundamentals of sliding (Dry) friction to the problems involving incipient equilibrium of a variety of connected bodies.
C05	Apply the appropriate techniques and tools to locate the centroid and compute the second moment of area.
C06	Analyze the motion of particles and apply D'Alemberts principle to solve the problems of kinetics and kinematics.

Mapping of Course Outcomes to Program Outcomes:

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C01	3	3	-	-	-	-	-	-	-	-	-	-	3	-
C02	3	3	3	-	-	-	-	-	-	-	-	-	3	-
CO3	3	3	3	-	-	-	-	-	-	-	-	-	3	-
C04	3	3	3	-	-	-	-	-	-	-	-	-	3	-
C05	3	-	3	-	-	-	-	-	-	-	-	-	3	-
C06	3	3	3	-	-	-	-	-	-	-	-	-	3	-

Module	Content of Module	Hrs	COs
No			
	Scope of Civil Engineering- Housing, Roads, Bridges and Dams, Basic		CO1
	Introduction of Building Materials – cement, bricks/blocks, aggregate(s),	4	
	timber, steel, composites, Components of a structure - Substructure, Super		
	structure and Finishes.		
1	Principle of statics, Particle, continuum, Rigid body, Force and its		
	characteristics, Types of forces and classification of force systems, Principle of		
	physical independence of forces, Principle of transmissibility of forces,	5	
	Principle of superposition of forces, Composition of forces - Definition of		
	Resultant; Composition of coplanar concurrent force system, Parallelogram law		

	of forces, Resolution of forces.		
2	Moment of a force, Couple, Characteristics of couples, Varignon''s theorem of moments, Composition of coplanar - non-concurrent force system, Equivalent force - couple system, Numerical problems on composition of coplanar non- concurrent force systems. Equilibrium of forces – Equilibrium of concurrent, parallel and general forces in a plane, equilibrium of three forces in a plane, Definition of equilibrant, Lami's theorem; Resultant and equilibrium of concurrent and parallel forces in space, Numerical problems on equilibrium of coplanar – concurrent and non concurrent force systems.	5	CO1, CO2, CO3
	(B) Introduction to beams, Types of loads and supports, Support reactions, statically determinate beams with point load (normal and inclined) and uniformly distributed/varying loads, Numerical problems.	4	
3	Friction-static friction, Laws of friction, Limiting friction, Angle of friction, angle of repose, Impending motion on horizontal and inclined planes, Ladder and block friction, Numerical problems.	4	CO4, CO5
	(B) Centroid of line and area, Centroid of regular figures, Locating the centroid of triangle, semicircle, quadrant of a circle and sector of a circle using method of integration, Centroid of composite sections; Numerical problems.	4	_
4	Second moment of area, polar moment of inertia, Radius of gyration, Perpendicular and Parallel axis theorems, Moment of Inertia of rectangular, circular and triangular areas from method of integration, composite sections, Numerical problems.	5	CO5
	(B) Analysis of simple determinate trusses by method of joints and sections	4	
5	Rectilinear motion of particles: (A) Kinetics- Newtons second law of motion and D"Alemberts principle for rectilinear motion of a particle, Numerical problems.	4	CO6
	(B) Work, Power, Energy, principle for particles- Conservation of energy, Work energy principle for rectilinear motion, Numerical problems.	5	

Text Books:

- 1. Elements of Civil Engineering by S.S. Bhavikatti, New Age International Publisher, New Delhi, 5th Edition, 2015
- 2. Elements of Civil Engineering and Engineering Mechanics by M.N.Sheshaprakash and G.B.Mogaveer PHI publications, 2nd Edition, 2012
- 3. Elements of Civil Engineering and Engineering Mechanics by H.J. Sawant and S.P.Nisture, Technical publications, 1st Edition, 2015

Reference Books:

- Engineering Mechanics by S.Timoshenko, D.H.Young, and J.V.Rao TATA McGraw-Hill Book Company, New Delhi, 5th Edition, 2013
 Engineering Mechanics by K.L. Kumar, Tata McGraw-Hill Publishing Company, New Delhi, 4th Edition, 2010
- 3. Engineering Mechanics by Nelson, Tata McGraw Hill Edn. India Pvt Ltd, 2013

CIE- Continuous Internal Evaluation (50 Marks)

Bloom"s Category	Tests	Assignments	Quizzes
Marks (out of 50)	30	10	10
Remember	5		
Understand	10	5	
Apply	7	5	5
Analyze	5		5
Evaluate	3		
Create	-	-	

SEE – Semester End Examination (50 Marks)

Bloom"s Category	Tests
Remember	10
Understand	10
Apply	15
Analyze	15
Evaluate	-
Create	-

Percentage Evaluation of Various Blooms" levels

Bloom"s Category	CIE	SEE	TOTAL	%
Remember	5	10	15	15
Understand	15	10	25	25
Apply	17	15	32	32
Analyze	10	15	25	25
Evaluate	3	-	3	3
Create	-	-	-	-
TOTAL	50	50	100	100

BASICS OF ELECTRICAL ENGINEERING

Course Code	: 15EEE15/25	Credits	04
L:P:T:S	: 3:0:1:0	CIE Marks	50
Exam Hours	: 03	SEE Marks	50

Course Outcomes: At the end of the Course, the Student will be able to:

C01	Analysis and solve DC and AC electric circuit problems by applying basic electric circuit laws and analysis techniques
CO2	Acquire knowledge about the construction, basic principle of operation and determineperformance characteristic of various electrical equipments
CO3	Acquire technical competence in specialized areas of engineering discipline to solve complex engineering problems
CO4	Designing of domestic wiring, understanding the precautionary measures against electric shock and need for earthing
C05	Acquire knowledge about constructional, basic working principle and their differencesbetween single, Two phase and poly phase system.
C06	Acquire knowledge about construction, basic working principle, efficiency of single phase transformer.

Mapping of Course Outcomes to Program Outcomes:

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	3	3	3	2	-	-	-	-	-	2	1	-
C02	3	3	3	2	-	-	-	-	-	2	1	-
CO3	3	3	3	2	-	-	-	-	-	2	1	-
C04	3	3	3	2	-	-	-	-	-	2	1	-
C05	3	3	3	2	-	-	-	-	-	2	1	-
C06	3	3	3	2	-	-	-	-	-	2	1	-

	SYLLABUS								
Module	Contents of the Module	Hours	COs						
1	Electric Elements & Circuit Laws: Charge and electric forces, voltage, current and magnetic forces. Ohm"s law – Resistance, Specific Resistance, Conductivity, Temperature coefficient of resistance and resistor colour coding, Kirchhoff"s voltage law and current law. Characteristics of series and parallel circuits. Current divider and voltage divider rules. Equivalent resistance of series – parallel circuits, definitions of work, power, energy and heating effects of electrical current Circuit Analysis & Techniques: Introduction to Superposition, Thevenin"s, Norton"s theorems and Maximum power transfer theorem (Only with independent sources and Resistive elements)	10	CO1, CO3						

2	Magnetic Fields:		
	Faradays law-Induced EMF- Dynamically Induced EMF and Statically Induced EMF, Self-induced EMF and Mutually Induced EMF. Self-inductance of a Coil and Mutual Inductance (all the laws associated), Energy Stored in Inductor and Capacitor.		
	Introduction to D.C Machines: Principles and construction of D.C machines, EMF equation, classification of D.C. machines based on method of excitation, load characteristics of D.C generators, critical resistance, voltage regulations, speed and torque characteristics of D.C motors. Testing and efficiency of D.C machine, applications.	10	CO2, CO3
3	 AC Circuits: Sinusoidal source, maximum, average and RMS values, form factor, analysis of R, L & C circuits. Complex algebra and phasor diagrams. Reactance, susceptance, impedance and admittance. problems involving series, parallel and series – parallel circuits, Power triangle - Real power, reactive power, apparent power and Power factor. Transformers: Single-phase transformers, construction and principles of operation, classification of transformers, E.M.F equation, turns ratio, ideal - equivalent circuit, phasor diagram, losses, efficiency, regulation and applications. 	10	CO1, CO3, CO2,CO5,CO6
4	Three-Phase Circuits: Introduction to single phase and poly phase, Advantages of poly-phase systems over single phase systems. Generation of various phase voltages (2 and 3). Relationship between line and phase quantities in Star and Delta for balanced systems, measurement of power using various methods and determining power factor using two watt Meter readings. Domestic wiring: Brief discussion on concealed conduit wiring. Two-way and three-way control of lamps, Electric shock: precautions against shocks. Protective devices – fuses, MCB''s ,Earthing – importance, pipe earthing, plate earthing.	7	CO1,CO4, CO5
5	Induction Machines: Three- phase induction motor, production of rotating magnetic field, construction and principle of operation, types of Rotor, slip and its significance, necessity of starter, applications. Measuring Instruments: Construction and Principle of operation of dynamometer type wattmeter and single phase induction type energy meter.	7	CO2,CO3

TEXT BOOK:

1. "Basic Electrical Engineering", DC Kulshreshtha, TMH, 2009 edition

2. "Basic Electrical and Electronics Engineering", S.K. Bhattacharya, Pearson Publications

REFERENCE BOOKS:

- 1. E.Hughes,"Electrical Technology", Pearson publishers.
- 2. "Basic Electrical, Electronics and Computer Engineering", Muthusubramanian R, Salivahanan S and Muraleedharan K A, Tata McGraw Hill, Second Edition.
- 3. "Basics of Electrical and Electronics Engineering", Nagsarkar T K and Sukhija M S, Oxford press University Press.
- 4. S.Parker Smith & N N Parker Smith," Problems in Electrical Engineering".
- 5. Electrical Technology B.L Teraja, Latest edition.
- 6. Basic Electrical Engineering, 3rd edition, TMH, D.P.Kothari.

Assessment Pattern

CIE- Continuous Internal Evaluation (50 Marks)

Bloom"s Category	Tests	Assignments	Seminar
Marks (out of 50)	30	10	10
Remember	10		5
Understand	10		
Apply	5	10	5
Analyze	5		
Evaluate			
Create			

SEE- Semester End Examination (50 Marks)

Bloom "s Categor	Tests
Remember	10
Understand	10
Apply	30
Analyze	
Evaluate	
Create	

BUSINESS COMMUNICATION

Course Code	: 15HSS162/262	Credits	02
L:P:T:S	: 2:0:0:0	CIE Marks	50
Exam Hours	: 02	SEE Marks	50

Course Outcomes: At the end of the Course, the Student will be able to:

C01	understand the concept, Process and important of communication
CO2	Gain Knowledge of media of communication
CO3	Develop skills of effective communication- both written and oral
CO4	Develop a holistic approach towards enhancing their professional behavior, self- confidence and proficiency

Mapping of Course Outcomes to Program Outcomes:

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	-	-	-	-	-	-	-	3	2	3	-	3
CO2	-	-	-	-	-	-	-	3	2	3	-	3
CO3	-	-	-	-	-	-	-	3	2	3	-	3
CO4	-	-	-	-	-	-	-	3	2	3	-	3

	Syllabus		
Module	Contents of the Module	Hours	COs
1	Types, purpose and definition of communication process – 7 Cs of communication, Barriers of Effective communicationand overcoming the barriers	05	CO1, CO2, CO3, CO4
2	Non –Verbal Communication (Body Language): Kinesics, Occulesics, Paralanguage, Proxemics, Artifactics, Chronemics&Tactilics and Presentation Skills	04	CO1, CO2 CO3, CO4
3	Importance of Listening:ListeningVs.Hearing Types of Listening, Barriers of Listening and Traits of a goodlistener	03	CO1, CO2, CO3, CO4
4	The four main types of reading techniques – Skimming,	04	CO1, CO2,
	Scanning, Intensive & Extensive		CO3, CO4
5	Written Communication:Business Letter Writing: Placing Orders & Letters of Complaint, Job Application Letter Writing Email Writing, Resumes & CVs and Expansion of Ideas	06	CO1, CO2, CO3, CO4

Text Books:

- Basic Business Communication: Skills For Empowering The Internet Generation-Flatley and Lesikar, Tata McGraw Hill, 10th Edition, 2005
- Business and Professional Communication: Keys for Workplace Excellence-Kelly M.

Quintanilla

• Business Communication-P.D. Chaturvedi and MukeshChaturvedi, Pearson Education

Reference Books:

- The Skills of Communicating-Bill Scott-Jaico Books
- Writing, Speaking, Listening-Helen Wilkie- Jaico Books

Assessment Pattern: CIE- Continuous Internal Evaluation (50 Marks)

Bloom "s Category	Tests	Assignments	Presentation
Marks (out of 50)	20	15	15
Remember	1	-	-
Understand	2	-	-
Apply	6	5	5
Analyze	3	-	-
Evaluate	3	-	-
Create	5	10	10

SEE – Semester End Examination (50 Marks)

Bloom "s Category	Tests
Remember	5
Understand	10
Apply	10
Analyze	10
Evaluate	5
Create	10

CONSTITUTION OF INDIA & PROFESSIONAL ETHICS

Course Code	: 15HSS172/272	Credits	0
L:P:T:S	: 2:0:0:0	CIE Marks	25
Exam Hours	: 02	SEE Marks	25

Expected Course Outcomes:

C01	To enable the learner with constitutional and engineering ethics knowledge.
CO2	To prepare learner for problem solving in legal and professional ethics front.
CO3	To inculcate in learner the sense of legal awareness and social & ethical responsibility.

Mapping of Course Outcomes to Program Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	-	-	-	-	-	-	-	2	-	3	-	-
CO2	-	-	-	-	-	-	-	2	-	3	-	-
CO3	-	-	-	-	-	-	-	2	-	3	-	-

	Syllabus							
Module	Contents of the Module	Hours	COs					
1	Introduction to Constitution of India, Salient features of the Constitution, Preamble to Indian constitution. Fundamental Rights & its limitations, decided case studies. Right to information Act.	05	CO1, CO2, CO3					
2	Directive Principles of State Policy, Fundamental duties. Union Executives – President, Prime Minister, Parliament, Supreme Cou of India.	04	CO1, CO2, CO3					
3	State Executives-Governor, Chief Minister, State Legislature, High Court of State, Electoral Process in India.	04	CO1, CO2, CO3					
4	Special Provision for SC & ST. Special Provision for Women, Children & Backward Classes. Emergency Provisions. National Human Rights Commission.	04	CO1, CO2, CO3					

ſ	5	Scope & Aims of Engineering Ethics. Responsibility of		CO1, CO2,
		Engineers, Impediments to Responsibility. Risks, Safety and	07	CO3
		liability of Engineers. Honesty, Integrity & Reliability in	05	
		Engineering. Corporate Social Responsibility.		

Text Books:

- 1. Durga Das Basu: **"Introduction to the Constitution on India"**, (Students Edn.) Prentice Hall EEE, 19th / 20th Edn., 2001
- **2.** Charles E. Haries, Michael S Pritchard and Michael J. Robins "Engineering Ethics" Thompson Asia, 2003-08-05.

Reference Books:

- 1. M.Govindarajan, S.Natarajan, V.S.Senthilkumar, "Engineering Ethics", Prentice Hall of India Pvt. Ltd. New Delhi, 2004
- 2. Brij Kishore Sharma, "Introduction to the Constitution of India", PHI Learning Pvt. Ltd., New Delhi, 2011.

CIE- Continuous Internal Evaluation (25 Marks)

Bloom"s Category	Tests	
Marks (out of 25)	25	
Remember	15	
Understand	05	
Apply	05	
Analyze	-	
Evaluate	-	
Create	-	

SEE- Semester End Examination (25 Marks)

Bloom"s Category	Tests
Remember	15
Understand	05
Apply	05
Analyze	-
Evaluate	-
Create	-